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Abstract In this paper, we introduce a new solution of the Euler’s dynamic equations for the rotational
motion of a rigid body about a fixed point under the action of a Newtonian force field. The
components of the angular velocity vector for this solution are differing from the most famous cases.
We assumed that the center of mass of the rigid body coincides with the fixed point and a restriction
on an initial condition is applied. The obtained solution is represented graphically using most recent
computer codes to describe the motion at any time and is considered as a modification of Euler’s case.
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Introduction:

The rotational motion of a rigid body about
a fixed point in a Newtonian force field is one
of the important problems in theoretical
classical mechanics. This problem attracted the
interest of many researchers during the last five
decades e. g. [1-7]. The great importance of
this research subject is due to the wide range of
its applications in mechanics. To solve these
problems we need to deal with intricate
techniques because they are governed by a
system contains six non-linear differential
equations besides with three first integrals [8].
The exact solutions of such systems require an
additional fourth algebraic first integral. Many
researches realized such integral for famous
special cases, which have some restrictions on
the body center of mass location and on the
torques acting on the body [9].

The perturbed rotational motion of a heavy
solid close to regular precession with constant

restoring moment was treated in [2] and [3].
The authors assumed some initial conditions to
achieve the analytical solutions of the

equations  of  motion using
averaging method [10] up to the first and
second approximations. The rotatory motion of
a symmetric gyrostat about a fixed point when
one component of the gyrostatic torque is
applied and in the presence of some torques
was considered in [4] and generalized in [5].
The motion of an electromagnetic gyroscope is
investigated in [6] when a Newtonian field,
perturbed moments and restoring ones are
applied. The averaging technique [10] is used
to obtain the first order approximate analytical
solutions. The graphical representations of
these solutions are presented to describe the
motion at any instant. The rotational motion of
that body under the action of a Newtonian
force field with the application of the third
component of a gyrostatic moment is
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investigated in [7]. The approximate periodic
solutions of the governing

equations are obtained using the small
parameter method of Poinacré [11]. This
method and its modifications [12-13] are used
in [14] to construct the periodic solutions of
limiting case for the motion of a rigid body
about a fixed point in a Newtonian force field.

The rotational motion of a heavy solid about
a fixed point in the presence of a gyrostatic
moment vector is presented in [15]. The
authors supposed that the body has rapidly
spinning about the major or the minor principal
axis of the ellipsoid of inertia. Krylov-
Bogoliubov-Mitropolski  technique [10] is
modified and used to achieve the periodic
solutions of the equations of motion.

The perturbed self-excited rigid body
problem with a fixed point is investigated in
[16]. The averaging theory [17] is used to
study the periodic orbits up to first order. In
[18], the authors presented the possibility of
constructing  exact  analytic  solutions
concerning the dynamic Euler equations of
motion.

The spinning motion of the hovering

magnetic top and its dynamic stability were
analyzed in [19] and [20]. The numerical
integration of a heavy magnetic top is
investigated in [21].
Existence of periodic motions of a rigid body
was investigated in [22]. The small parameter
method was used to obtain the periodic
solutions of the equations of motion. The
center of mass of the body is slightly shifted
from a dynamically symmetric axis. The
generalization of this problem was treated in
[23] when the body rotates under the action of
a Newtonian field and in the presence of one
component of the gyrostatic moment vector. A
new exact solution of the equations of motion
of a rigid body is investigated in [24] when the
body moves under the action of a uniform
force field. The author assumed that the center
of mass of the body is located at meridional
plane and the principal torques of inertia
satisfied a simple algebraic condition.

In this work, we extend the previous studies
when the rigid body moves under the action of

a Newtonian force field arising from an
attracting center located on the downward
fixed axis. We assume that the center of mass
of the body coincides with the fixed point
(origin). The achieved solution is obtained

after taking account some algebraic
assumptions concerning on the moments of
inertia.  This  solution is  represented

graphically, in the rest of this paper, to show
the behavior of the body motion under the
action of Newtonian force field. From this
point of view,

the current study may be regarded as a
modification of Euler’s case for the motion of a
rigid body.

2. Equations of motion

Consider the motion of a heavy rigid body
that rotates about a fixed point O, in the body,
under the influence of a Newtonian force field
arising from an attracting center O, being
located on a downward fixed axis passing
through the fixed point O. Let OXYZ be a
fixed coordinate system and another moving
one Oxyz which is fixed in the body and
whose axes are directed along the principal
axes of inertia of the body with originO. The
equations of motion are given below [14]
Ap+(C-B)ar=Mg (7, 2, —75 Yo) +N(C-B) 7, 73,
Bg+(A-C)rp=Mg(r; X, =71 20) + N(A=C) 5 71,
Cr+(B-A)pa=Mg(r, Yo =7, X)) +N(B-A) 7, 7,,

)

with

V1=0Y,=AYs V2=PVs— TV,
73=07,— P,

(2)

where A, B and C are the principal moments
of inertia of the body; p,q and r are the
projections of the angular velocity V of the
body on the principal axes of inertia;
y=(».,7275) is the unit vector in the
direction of the Z -axis; M is the mass of the
body;, g is the gravitational acceleration;
Xy, Yo and z, are the coordinates of the center
of mass in the moving coordinate system Oxyz
The overdot here refers to differentiation with
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respect to the time t and N = (31/R®) where
R is the distance from the fixed point O to the
attracting center O, and A is the coefficient of

such center.
Equations (1) and (2) admit the following three

first integrals

yi+ri+ri=1

Apy,+Bay, +Cry; =C,,
(Ap?+Bqg?+Cr?)+2Mg (X 7, + Yo 7>
+2,75)+N(Ay2 +ByZ ++Cyp2)=2C,,

©)

where C; and C, are constants.

3. Euler’s case

As in Euler’s case, we obtain the following
first fourth integral according to the presence
of Newtonian field
A’p? +B%q® +C?r2 —N(BCy;
+CAy; + AByZ)=C;.

(4)

Making use of the first two integrals in (3)
and the fourth integral (4), one obtains
_A _Ba_Cr

71 Cov 72 Co’ V3 C,

()

Substituting from systems (1) and (2) into
the third equation of system (3), one gets

C,[(N"A’ +1)Ap? +(N'B* +1)Bg” + (N"C* +1)Cr’]
+% Ap+Yy,Bg+2,Cr=C,,

(6)

where

C2= CO , C3:C0C1, N*=—2
2M g Mg C;

Equation (6) represents a linear combination
of the first integrals (3), the fourth integral (4)
and (5). So, we seek for a solution that satisfies
the previous equation (6).

4. The modified solution

For our scope, let us consider the following
choice together with the assumptions of Euler’s
case

A>B>C.

This choice allows us to rewrite equation (6)
in the form

o = 2C, - N,Bg*-N;Cr?
N, A

(7)

where

N, =N"A?+1, N;=N"B*+1 N;=N'C’+L

Substituting from (7) into (4), we can obtain
directly g* in the form
q°=C,—Cgr?.

8

Here,

~ [C¢—(2C,A/N;)+(2C,N"ABC /N,)]
[L—N"AC —(N;A/N;B)+(N'N;AC/N;)IB?’
_[L-N"AB-(N;A/N;C)+(N"N;AB/N;)]C?
" [L=N*AC —(N;A/N;B)+(N*N;AC/N;)B?’

4

5

The substitution from (8) into (7) gives
p?=Cs +C,r%

C,=(2C, -N,BC,)/N, A

C,=(N,BC, -N,C)/N/A

©)

Substituting from equalities (8) and (9) into
the third one of the system of equations (1), we
get

dr B
I[(A—B)/cw(ce+C7)(c4—cs) r? -

Under the present circumstances, the solution
of the previous integration can be obtained
easily as

r ={k-[(A-B)/C]{(C, +C,)(C, ~Cy) t} ::k = const.

(10)
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An inspection of equations (8), (9) and (10),
broadly speaking, provides the solution of the
problem when the rigid body rotates under the
action of a Newtonian force field. This
elucidates that, we can separately determine the
components of the angular velocity vector p,
q and ras functions of time t from these
equations. Consequently, we can obtain

directly the scalar value of the angular velocity
vector in the form

1+C, -C,
\Y :M :‘\/(Q +Ce)+[m] ,
(11)
where

Cs = [(A_ B)/C]\/(Ce +C7)(C4 _C5) .
5. Discussion of results

In this section, our aim is to provide some
numerical results using the computer programs.
The following data are used to determine the

motion in the considered problem
A=7kgm?, B=6kgm? C=4kgm? M =100kg,
g=9.8m/s?* N =(200,400,500)kg.m/s’

Figures (1-4) show the variation of the
angular velocity V versus time t in 2-D plane
when N =200kg.m/s* and N =400kg.m/s”.

It is to be noted that, the value of the angular
velocity of the body monotonically increases
with the increase in time (see figures 1, 3) till it
has attained its maximum value whenever

t=k/Cy, i.e. when the dominator of the

second bracket in equation (11) vanishes, at
different values of Newtonian force field. The

domain of equation (11) is R™ U{0}—{k/Cy}
and its range is R* {0}, where R" is the
positive real numbers, (C,+C,)>0 and
(+C,-C,)>0.

Above the value t=k/C;, the numerical

computations show that the angular velocity
gradually decreases as the time goes on, in a

similar manner to its increase, (see figures 2,
4). Further, we observe that the growth in the
value of Newtonian force field leads to
increase in t and V as well.

To make the results more favor, we proceed
to illustrate the numerical results in 3-D space.
Figures (5-7) and (8-10) represent the behavior
of the angular velocity V and time t via
& =(V —t) when the Newtonian force field

equals to 200 and 400, respectively. It
should be noticed that figures (5, 8), (6, 9) and
(7, 10) describe the behavior of the body
below, near and above the maximum value of
time t, respectively. The spatial figures for
most values of Newtonian force field are
presented; see figures (11-16).

It is clear from all previous figures that, the
Newtonian force field has acquired a
significant influence on the behavior of our
model. Such results may be utilized in many
industrial applications in various fields; like
satellite, spacecraft and manipulators.

V- axis

0260

0.240

111 N=400 N=400
N ~

0 10 20 E) &0 50 T 0 3 40 0 &
3 .
Fig.3 Fig. 4
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10 jresulfs

Fig. 5

10 Jresults

Fig. 7 Fig. 8

6. Conclusion

In this work, we have developed a modified
solution, represented by (8)-(10), for the
Euler’s dynamic equations (1) with the aid of
Poinsot’s equations (2), when the rigid body
rotates under the action of a Newtonian force
field. The obtained angular velocity
components are different from Lagrange’s
case, Kovaleveskaya’s case, Euler’s case
(when the body rotates without any applied
torques) or from any special case. A restriction
on the choosing of initial conditions of

p(0)1 q(o)’r(o)!71(0)17/2(0) or 73(0)
according to the meaning of C/ is considered.

The obtained solution is considered as a
modification for both Euler’s case and Ershkov
[24] work when the Newtonian filed has no
effect, i.e. vanishes. The  graphical
representations of the obtained angular velocity
solution are presented through different
figures. The numerical results have shown that
the Newtonian force field value has an
important effect on the rigid body motion.
However, the analytical results of the rotational
motion of a rigid body about a fixed point can
be exploited in industrial applications, such as
satellites, autopilots and aircrafts.
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Associated graphs and chain maps
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Abstract:In this paper, we defined the associated graph constructed to a cellular folding defined on regular CW-
complexes. These graphs declare the effect of a cellular folding on the complex. Besides we studied the
properties of this graph and we proved that it is connected and vertex transitive if the cellular folding is neat.
Finally, by using chain maps and homology groups we obtained the necessary and sufficient conditions for a
cellular map to be cellular folding and neat cellular folding respectively.

Key words:

Cellular folding, chain map, regular CW-complexes, vertex transitive, neat folding.

1-Introduction:

The study of foldings of a manifold into anther
manifold began with S.A. Robertson's work on
isometric folding of Riemannian manifolds [10].
After several attempts of generalizing the notion of
isometric foldings, regular foldings were first
studies by S.A. Robertson, H.R. Forran and E.EI-
Kholy [2]. The notion of cellular foldings is
invented by E.EI-Kholy and H.A.AL-Khurassani
[1]. Different types of foldings are introduced by
E.EL-Kholy and others [3, 4, 2].

(@) A cell decomposition of a topological space
X is a decomposition of X into disjoint open
cells such that for each cell € of the

decomposition, the boundary 08 =€ —€is a
union of lower dimensional cells of the
decomposition. The set of cells of a cell
decomposition of a topological space is called
cell complex, [9].

A pair (X , é’) consisting of a Hausdorff space

X and a cell- decomposition & of X is called a

CW-complex if the following three axioms are
satisfied:

1- (Characteristic Maps): For each N-cell € € C;

there is a continuous map @, :D, =X
restricting to a homeomorphism

. _ =
d)e|im(Dn) :int(D,) > € and taking S™ " into

X n-1
2-(Closure Finiteness): For any cell € € & the
closure € intersects only a finite number of

other cells in é’ )

3-(Weak Topology): A subset Ac X is
closed iff ANe is closed in X for each
ec
e

A CW-complex is said to be regularif all its
attaching maps are homemorphisms. If each closed
N -cell is homeomorphic to a closed Euclidean N -
cell [8]. A topological space that admits the
structure of a regular CW-complex is termed
a regular CW-space.

(b) Let Kand L be cellular complexes and
fi‘K‘—>‘L‘ a continuous map. Then
f : K — L isacellular map if (i) for each
cell o€ K, f(o)isacellin L, (ii)
dim (f (o)) <dim (o), [71.

(c) Let Kand L be regular CW-complexes of
the same dimension and K be equipped with
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finite cellular subdivision such that each
closed N-cell is homeomorphic to a closed

Euclidean N-cell. A cellular map f : K —> L
is a cellular folding iff : (i) for each i-cell

o' eK,f(c)isanicellin L ,ie., f

maps i-cells to i-cells, (ii) if © contains N

vertices, then T (o) must contains N

distinct vertices.

In the case of directed complexes it is also
required that f maps directed i-cells of K to i-
cells of L but of the same direction, [5].

A cellular folding T : K — Lis neat if

L" — L™ consists of a single N-cell, interior L

. The set of all cellular foldings of K into L is
denoted by C(K, L) and the set of all neat foldings

of Kiinto L by MK, L).

d 1f f eC(K,L), then X € Kiis said
to be a singularity of f iff f is not a local
homeomorphism at x. The set of all
singularities of f corresponds to the "folds" of
the map.

This set associates a cell decomposition C; of

M. If M isa surface, then the edges and vertices

of C; formagraph T"; embedded in M, [6].

(e) Let f Z‘K‘ —> ‘ L‘ be a continuous function.

If, for each  k-chain Cin K, f(C)is a k-
chainin L and if the diagram

C,(K)——C, (L)
0 0
Ck—l(K)—f>Ck—1(L)

commutes, then f : K —> L is a chain function
from Kt L, [7].

(f) The set S, of all permutations on N objects
forms a group of order n!, called the symmetric
group of degree N, the law of composition
being that for maps of the objects onto
themselves. A group of permutations is said to
be transitive if, given any pair of letters a, b
(which need not be distinct), there exists at

least one permutation in the group which
transforms a into b, [11]. Otherwise the group
is called in transitive. And is said to be 1-
transitive if for any pair of letters a, b, there
exists a unique element x of the group such

that a*X=Db.
2-The associated graph:

Let T :K — Lbe a cellular folding. By

using the cell subdivision C; of K we can define

the associated graph G; constructed from the N-

cells of K and the cellular folding f as follows:

The vertices of G; are just the N-cells of K

and if o and & are distinct N-cells of K such
that T (o) = T (o), then there exists an edge
E with end points & and o' . We then say that
E isanedgein Gf with end points O, o’

The graph G; can be realized as a graph G;
embedded in R® as follows. For each N-cells 0,
o’ choose any points Ve o, V eo' . If
o and o are end points of an edge E , then we
can join Vto v’ by an arc e in R® that runs from

V through O and o t V crossing E
transversely at a single point. The correspondence

ooV, Eoeis trivially a graph isomorphism
from G; to G, .

It should be noted that the graph Gf has no

multiple edges, no
disconnected.

loops and generally

In this paper by a a complex we mean a regular
CW-complex.

Examples(2-1):
(@) Let K be a complex with the cellular
subdivisions given in Fig.(1-a). Let

f :K =K be a cellular folding defined by f

(V2, Vs, Vg, V11) = (Va, V7, Vao, V13), T (€1, €4, €s,
€g, €11, €14, €16, €19, €21) = (B3, €5, €g, €1, €13, €15,
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€18, €20, 623) and f(Gl) :Gi+1' i= 1, 3, 5 7, 9,

where the omitted 0, 1, 2-cells through this
paper  will be mapped to themselves. The

graph Gf in this case has ten vertices and five
edges as shown in Fig.(1-b).

P) Vv
g g g
v U”"MV vy Ki v
I8 | & { N5 {
5 Gy 0 g 5 0 |
. vV, N
b B e 7 Lg ] v hogrowo U
g,| O & ] 7 e
W %% %l e G
Y 4 v V v
ey 55| 10 e 1w
% ”F’;w %G | w6 |
Y L i 7o
T | S o 11
99,2 1/ 1 o~
&1 3 p?f B3 G,
l
)
4 ( ]
K JIKL (b)
Fig.(1)
b) Consider the complex K shown in Fig.(2),

which( consists of one 2-cell, seven 1-cells and
seven O-cells. Let f:K —>K be a cellular
folding defined as follow: f (vs, Vg, V7) = (V2, V3,
V), f(e)=e, 1 =5,6,7and f(0o)= O .

The graph G; in this case consists of a
vertex only with no edges.
| g
T Y 1y
Y7
% i ¢ e eﬁ g o 4
J g {
f u
Y % Y -
g 3 :
3 ‘3_; Gf
K (@ [ )
Fig.(2)

(c) Let K be a complex such that ‘K‘ is a cylindrical

surface with a cellular subdivision consists of
eight O-cells,sixteen 1-cells and eight 2-cells,
see Fig.(3). Let f:K—>K be a cellular
folding defined by: f (vs, Vs, V7, Vg) = (V1, V3, V3,
V),

f(el,ez,eg,e4,e5,e6,e8,ell,e12,e13,e14) = (egiegvegaeg:
€5,€7,€95€10s €161 €155 €1) and

f(0,,0,.04,04,05,04) = (04,05,07,07,04,07).

This can be done by the composition of the
cellular foldings: f, (s, vs) = (v,

V3), fl(el’eZ’eG’GS’ell’e13’el4) =
(eg 1€4,€7,€9,€14,€5, elG) and

fi(o1,02,03,04) =(05,06,07,08).
1:2 (V6’V7) = (V31V3) )

fo(e3,e4.€5,€12) =(eg,e9,€15,€16)
and f,(o5,05) = (0%, 07).

following two

The graph G; in this case has eight vertices and
twelve edges  see Fig.(3-b).

5%
(% w0 Ny
& 4 . g
2
| U
o bl UE
N = ‘1 L‘? , N
\gﬂ""'—»——"e—/ ‘ \;\fjh__wej/ ‘ E G, .
? iy 8 o
K KL

Fig.(3)

(d) Consider a complex K such that ‘K‘ is a tours
with four 0- cells, eight 1-cells and four 2-cells, see
Fig.(4-a). Letf :K—>K be a cellular folding
givenby: f (vi) = v;, i =1,2,3,4, f(es e = (e
e and f(0,,0,)= (0,,05).The graph G;

in this case has four vertices and two edges, see
Fig.(4-b).

U ou,

Fig.(4)
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3-Properties of the associated graph:

Some of the properties of the associated graph can
be characterized by the following theorems:

Let K and L be complexes of the same dimension
n, feC(K,L). The associated graph G; is
disconnected unless f is a neat cellular folding.

Proof:

Let oyand O, be distinct n-cells of K, and

let oy~0,means T (o)="T(o,). Itis

clear that the relation ~ is an equivalence relation.
. K(n)

Hence the quotient set / ~

{[c],0 € KM}is a partition on K™,
where [o] is the equivalence class of any n-cell
o . It follows that G, has more than one

component otherwise all the n-cells of K will be

mapped to the same n-cell of L which in fact is the
case of cellular neat folding. In the last case there

will be a unique equivalence class [G] and hence

the graph G, is connected.

It follows from the above theorem that the
components of the graph Gf is equal to the number
of the equivalence classes generated by the relation

Theorem (3-2):

Let K and L be complexes of the same dimension
n, T €eC(K,L) a cellular folding. Then each

component of G is vertex transitive on itself.

Proof:
From Theorem(3.1) the equivalence
defined on the n-cells K™ of K defines a partition
{[6]l,0e K™} on K™,

equivalence class represents a component of Gf :

relation

where  each

Now, consider one of these componentsG'f , With
say I' vertices, i.e., ’V(G'f )‘ = I . Each vertex of

G} is adjacent to the other vertices in the
component, then any permutation of the set

Vv (G:( ) is an automorphism of Gif . Thus the set

of all permutations (automorphisms) form a group
which is the symmetric group S; acting on the set

V (G}). The orbit of any & €V (G ) under

S, is the whole set V(G}),ie., V(G})hasa
single orbit and hence the automorphism group S; is
transitive on V (G} ) .

Results(3-3):
Let f:K — L beaneat cellular folding:

acts 1-

1) The symmetric group S, I =‘K(”)
transitively on the  graph Gy.
2) G is vertex transitive.

3) From the above results we conclude that the
graph G; of a neat cellular folding is a complete
graph.

Example (3-4):

Consider the complex K shown in Fig.(5-a), which
consists of four 2-cells, eight 1-cells and five 0-

cells. Let T : K = K be a cellular folding defined
as follows: f (vs, V5) = (V3, V2), f (€4, €5, €6, €7, €g) =
(s €1, €, € f (0) = O,
1=21,2,3,4. The graph Gy in this case is
complete, see Fig(5-b).

e,) and

I, :

‘fl ‘] e? ”j C\r; ”?
L fIKL )
Fig.(5)

(4) Chain maps and cellular folding:

The following theorem gives the necessary and
sufficient condition for a cellular map to be a
cellular folding.

Theorem(4-1):

Let K and L be complexes of the same dimension
nand f:K—L be a cellular map such that

f(K)=L =K. Then f
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is a cellular folding if and only if the map
f, 1 C,(K) —C,(L), between chain complexes

(C,(M),8,), (C,(N),8%)is a chain

map.

Proof:

Let f:K—L be a cellular folding, then it is a

cellular map and for each p-cell o € K we can
define a homomorphism

f, C,(K)—C,(L)by:

_(f(o), if flo)isap—cellinL
fp—{ Qo , if dim(f(0)) <p
And since cellular foldings map p-cells to p-cells
51, f,(c,)isap-cellin L forall A . Thus for

a p-chainC = a0 +a,07 +...
+a.0) C,(K), where &,’s € Z and

o, Sarep-cellsin M,

af (of)+a,f (o])+..
f,(C)=f (ao +a,0; +...+a.07) =
+a, f (o) eC, (L)

Now, since the closures of both O‘f and

f (o)) have the same number of distinct
vertices, then f, 00, = oof . where
0,:C,(K)—>C, (K)and
8/p :C,(L) >C, (L)are the boundary

operators, that is to say the following diagram
commutes

C,(K)—=—>C_(L)

/
4 o,
f
C, (K)—=—>C, (L)
and hence f, is a chain map. Conversely, suppose
f is not a cellular folding then there exists a j-cell
o in K such that T (&) is an m-cell in L, where

J # M. Since f, is a homomorphism from the
p™"-chain of K to the p™-chain of L, then

n-1 (i) n-1 (i)

(X Ao +2n0) = Y. 4 j(01)) + I f (o)
I= i=1

but T (o) is not a j-cell, then f; cannot be a j-

chain map and hence our assumption is false, and
we have the result.

Examples (4-2):

(a) Let K be a complex such that ‘ K‘ is the infinite
strip {(X,¥):0<x<o0,0<y<I}

equipped with an infinite number of 2-cells such
that the closure of each 2-cell consists of four O-
cells and four 1-cells, P,. Let L be a complex with
six 0-cells, seven 1-cells and two 2-cells, see

Fig.(6). The cellular map T : K —> L defined by:
f(vi) = V! where i =1,2,...,6,

f(v) :V§, where  J=1,2,...,6 and
(1 — J) isamultiple of 6,
fle) =el,i=1,11,21,.., f(e) = e}, i
=2,12,22, .., f (&)
=el,i=3,813,..,f(e) = e},
=4,9,14,..,f(e) = el,i =
5,10,15, ..., f(e;) = e/, i = 6,16,26, ..., f(¢;)
=eli=717,
crl/ ,if iisodd,
27,...and f(0;) = / .
o, ,if iiseven
is a cellular folding.
y
5 B % & Wy 0 4 gj
/
U0 g o8 0 |0 g
WG W 6w By oy \(ﬁ é4 é‘
o oo
326267 4911 G eﬁ 920397
35 Vﬁ By WJ ei‘!: \&lz Y f y 9/5 V/ﬁ
% i
k JL

Fig.(6)

(b) Consider a complex K such that ‘K‘ =S°? :
with cellular subdivision consisting of two 0-cells,
four 1-cells and four 2-cells. Let T : K — K pe
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a cellular map defined by: f (€,,6,) = (e,,€;)
and T (o) =0y,1=1...,4.

This map is a cellular folding with image consisting
of two 0-cells, two 1-cells and a single 2-cell, see

Fig.(7).

Fig.(7)

(c) Consider a complex K such that ‘K‘ is a

tours with cellular subdivision consisting of three 0-
cells, six 1-cells and three 2-cells. Any cellular map

f : K — K which has two vertices in the image

is not a cellular folding since T, in this case is not
a chain map, see Fig.(8).

Fig.(8)

(d) Consider a complex K such that ‘K‘ =S?

with cellular subdivision consisting of four 0-cells,
six 1-cells and four 2-cells, see Fig.(9).

Let f : K — Kbe a cellular map defined by
f(v,)=v,,i=1,...4,

f (ez’ es) = (e11 e4) and
1=1...,4.

f(o)=0,,

This map is not a cellular folding since ©; and

f (o) do not contain the same number of
vertices.

Fig.(9)

Result (4-3):

Let T : K — L, be a cellular folding. Then the
induced homomorphism f; ‘H,(K) > H, (L)
will maps the generators of H (K) to either the
generators of L or to zeros. This follows directly
from the fact that the chain map
f,:C,(K)>C,(L) defines a homomorphism
that has this property [5].

(5)Homology groups and neat cellular foldings:
The following theorem gives the necessary and
sufficient condition for a cellular map to be a neat
cellular folding.

Theorem (5-1):

Let K and L be complexes of the same dimension
n

if T eC(K,L), then f is neat if and
only if the map
f,:C,(K)>C,(L) between chain complexes

(C,(M),8,), (Cp(N),a%p) is a chain map
and H (K) = ker f., where

f.:H (K)—>H_ (L), p21 is the induced
homomaorphisms.

Proof:
Assuming that f is a neat folding, then it is a
cellular ~ folding and hence the map

f,:H,(K) > H,(L) between the chain complexes

(Cp(K),Gp),(Cp(L),alp) is a chain map. Now
consider the induced homomorphism
f.oH (K)—>H, (L), there is a short exact
sequence
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0 —ker f.——>H_(K)—"—Imf.
where i is the induced homomorphism by the

inclusion.  Since f surjective, we  have

Im f. = H (L), but H (L) =0 for neat cellular

foldings, hence the above sequence will take the
form

0—>ker f.——H (K)—>0
The exactness of this sequence
H,(K) = ker f..

Conversely, suppose

implies that

f is a chain map between
chain complexes and H j(K) = ker f. but f

is not neat, then L" — L"_lconsig.ts of more than
one n-cell. Thus Hy(L)=Z',H (L) =0,
for p=1,2,...,n

H,(K)=H,(L) ®ker f. = ker f,

for P =0, and hence the assumption is false and
f is neat.
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Abstract: In this paper, the exact truncated distribution of the stock price (truncated distribution
for the range of a Wiener process) is available among the established results in the field of
mathematics (Probability Distributions). Various statistical properties of the distribution are derived
including reliability properties, moments, stress-strength parameter, order statistics, Bonferroni curve,
Lorenz curve and Gini’s index. A real data set is analyzed to clarify the effectiveness of this
distribution.

Keywords: Truncated distribution; Wiener process; Reliability properties; Order Statistics.

1. Introduction

Truncation in probability distributions may beginning of an experiment until all of them
occur in many studies such as life testing fail, and the experimenter may have to start at a
and reliability. Truncation arises because, in certain time and stop at a certain time when
many situations, failure of a unit is observed some of the units may still be working. Many
only if it fails before and/or after a certain researchers were interested in studying the
period. May sometimes happen to be range of truncation method of the distribution, for
the definition of a certain probabilistic example: Zaninetti [12] presents a right and left
distribution is not fully compatible with some truncated gamma distribution with application
of the data, either for theoretical reasons or to the stars that introduces an upper and a lower
because the portion of the data cannot be boundary. In addition, the parameters which
obtained within this range, in this case we characterize the truncated gamma distribution
resort to the truncated distribution. The are evaluated. A Class of truncated Binomial
truncation method of the distribution is an lifetime distributions is obtained by Alkarni
important methodology in different fields of [13]. The type of middle and random truncation
sciences, in particular communication networks have been studied by Mohie EI-Din et al. [14]
and finance. etc. Truncation occurs in various and Teamah et al. [15]. Ali and Nadarajah [3]
situations, for example, right truncation occurs introduced a truncated version of the Pareto
in the study of life testing and reliability of distribution. They derived the explicit
items such as an electronic component, light expressions for the moments for the truncated
bulbs, etc. Left truncation arises because, in version. Nadarajah [4] introduced truncated
many situations, failure of a unit is observed versions for five of the most commonly known
only if it fails after a certain period. Often, long tailed distributions which possess finite
study units may not be followed at the moments of all orders and could therefore be
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better models. Zaninetti and Ferraro [5]
presented a comparison between the Pareto and
truncated Pareto distributions. Recently, many
papers has been presented the most important
applications of the truncated distribution in
various fields of science, for example, Pender
[7] used the truncated normal distribution to
approximate the non stationary single server
queue with abandonment. Chattopadhyay et al.
[8] provided a more accurate data fitting by
using truncated geometric distribution to model
the node degree distribution of a network
compared to power-law, log-normal, Pareto,
drift power-law and power-law  with
exponential cutoff distributions.

The Wiener process has many applications
throughout the mathematical sciences. In
physics it is used to study Brownian motion,
the diffusion of minute particles suspended in
fluid, and other types of diffusion via the
Fokker—Planck and Langevin equations. It also
forms the basis for the rigorous path integral
formulation of quantum mechanics (by the
Feynman-Kac formula, a solution to the
Schrodinger equation can be represented in
terms of the Wiener process) and the study of
eternal inflation in physical cosmology. It is
also a prominent in the mathematical theory of
finance, in particular the Black—Scholes option
pricing model. The change of price formula
based on the assumption that stock price follow
a wiener process. The distribution of stock
price through known time interval is the
distribution of a Wiener process range. In the
time interval (0,T) the range of the Wiener
process {W(t);t >0} is
R(T) =supW (t)—inf W(t)and it gives the

(0T) (o1)

difference between the highest price for the
stock and it's the lowest price. Feller [1]
derived the probability density function of this
range by using the method of images. Recently,
an expansion for its cumulative distribution
function and its quantiles are given by Withers
and Nadarajah [2]. In addition, they gave a
table of this cumulative distribution function.
Here we have the following question: what
should be done if we need to find the new
distribution of the stock price in the time

interval (0,T) and its value is sandwiched

between two certain values a, b? To answer

the above questions, we should do a truncation
on the distribution of a Wiener process range
that has been obtained by Feller [1].

In this paper, we will provide the Truncated
Distribution of a Wiener Range (TDWR) and
study various its statistical properties. The
properties studied include reliability properties,
moments, stress-strength  parameter, order
statistics, Bonferroni curve, Lorenz curve and
Gini’s index. The difference between the
TDWR and distribution of a Wiener process
range which has been obtained by Feller [1] are
showed as in the given figures through the
paper.

The paper is organized as follows. In Section 2,
we introduce the TDWR. We study some
statistical properties for TDWR in Section 3.
An application to a real data set is presented in
Section 4. Section 5 ends the paper with some
concluding remarks and future works.

2. Truncated distribution of a Wiener range
(TDWR)

The stock price is assumed to move randomly
according to one dimensional Wiener process
{W(t),t eR"}, where R" is the set of real

numbers and W (t) is a Wiener process on

(0,0) with range R(T)on the time interval

(0,T). This range is the difference between

supW (t) and infW(t). Feller [1] gave the

oT) G

probability density function for the range of

W (t) which controls the target’s motion as:

1 -1

T 2
2

NG =[3]2r1(2n)2

T

1\ 2

= (2k —1)27% | FT 2
D exp| - .
P 8 2

1)
where 0<T <ooand T >0and it is represented
as in the figure 1.
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o777 77—

Density Function

Figure 1: The probability density function
of R(T).

Withers and Nadarajah [2] give its cumulative
distribution function by:

8T
Faen (1) = Z[(2k N rZJX

exp{_ (2k —1_)2)2;;21
2r
2)

and it is represented as in figure 2.

10 fr——

TS Ty
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08 T 01 A
- T.03 |
- T 06 |
- T.09

- T 12
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Figure 2: Cumulative distribution function
of the range distribution.

Hence, it is easy to show that the survival
function FR(T)() 1-Fgq, (1) is decreasing by

increasing the value of T, see figure 3.

10 T T
- T 01
- T:03
- T 06
- T.09
= T 12

08 I

06

04

02

‘-
Pt NP RPN, P

25 3.0

Figure 3: Survival function of the range

The distribution.

that defined by (1) lies in its ability to model
lifetime data with increasing failure rate.

We are interested in TDWR defined by the
following definition.

Definition 1. Let R(T) be a random variable
with probability density function (1), define
R(T) as a corresponding double truncated

(truncation from left and right) of R(T)with
the probability density functiongg ., (r) : Then,
the probability density function of double
truncated of R(T) s given by:

e (1)
Fer (0) = Fr) ()

(k-1’2 T
+8r°T ]e 2

Irery (1) =

2

Z““: 8
=2k -1)?x?

(2k-1)*z%Tb?
4 8Thb? je 2

(2k-1)*7*Ta?
+8Ta”? Je 2

i

/ﬁ\

(2k — 1) e

XMS

L
“\ (2k —1)27°
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(3) using integration by parts as in the appendix A,
where a<r <band T >0 (see Appendix A) . we get:
Figure 4 represents the TDWR density function ~(-2k)? 2T -2k 22T
. I . 4| 8 -ae ®  4re 2
for different values of aand b with increasing ‘T?l -
the value of T . ‘ 2 é (7 - 2k7x)?
Remark 1. Using the ratio test, we can prove
(2k-1)22%r T GR(T) (= w 8 (2k-1)27’Tb 2 '
= 8e 2 . (+8Tb‘2Je 2
that > =————— is convergent where kZ;‘ (2k -1)*7*
k=1 (2k —1) T " 8 7(2k—1)27zZTa’z
2 2.2 2 2 2 _z o a2 2 +8Ta72 e 2
(2(k+1)-1)* 7T 1) 72T (2 1) 72T =\ (2k-1)27x
Z < (2(k +1) - 1)% 7 (2k Nig? |
(4)
B and it is represented in figure 5
— T 0.2a 05b 7
cr N T 03a 06b 6 ', T I k T T T T
g T 0.6a 07b 5 ) l'
e ot oom08b 4 ! ! — to2ao0s -
§ o ! |
g T 12a 09b 3 "' / 'l. T:0.3,a 0.6
%DA "' I l.' T
;! --- T 06a07
02 ' I ;l.
',' /i — T 09a08
/’ / / l"
L . . ; =t T 12209 ]
Figure 4: Double truncated 3 4 5 6 7
probability density r
Figure 5: Cumulative distribution function of

Thus, by the Weierstrass M-Test we see that, TDWR.

(k1% 7T

= 8e 2 L
kZ:; (2k—1)272 Is uniformly convergent to 0. Consequently, the survival function of TDWR
is Gy () =1—Ggr) (r) and it is decreasing by

Consequently, we can get (1) from (3)

when a—0 and b — «© increasing the value of T, see figure 6.

The cumulative distribution function of TDWR

is given by:
(r)
G (r) _ R(T) ,
R(T) j R(T)(b) FR(T)(a)

a
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1.0

— T. 0.2,a. 0.5

0.8
T. 0.3,a. 0.6

-- T 0.6,a 0.7
0.6

- T 09,a 0.8

o4 <=« T 12a 09

0.2

0.0

Figure 6:Survival function of the TDWR.

3. Some statistical properties

In this section, we study various statistical
properties of the range distribution (truncated
and non truncated) including shapes of the
probability distribution function and the hazard
rate  function, reliability properties, raw
moments, moments of (reversed) residual life,
stress-strength parameter, Bonferroni curve,
Lorenz curve and Gini’s index.

3.1 Reliability properties

A key concept of "Whenever you want to
check more than one investment profits in the
stock market, investment whenever exposed to
greater risk." You are when you buy or sell
shares or bonds or any other financial
instruments, you are fair investment risk and
the degree of risk this differ from other
financial instrument. For example, the financial
instruments that you expect them highly
profitable (such as active stock) contain a large
degree of risk. This means that the share price
could rise so much (that is to make a profit for
you), but it may happen that the price drops
much (and these are the risks that may cause
the low volume of your money and your
investments). Therefore, the risk rate (hazard
rate) is influenced by the swings between fall
and rise much of the stock price during the time
period (0,T). We get the hazard rate function

of the range distribution for Feller [1] and
Withers and Nadarajah [2] as follows:

Zg,(F) = fﬁ(n{'?ﬁ(t)(f)y1
2 b - : = _(2k-1)°7° ﬁ’%

N = 8 8T 2k —1)% 27T
1- St P
é(@k—l)znz " sz Xp[ 2r*

(5)

and it is represented as in figure 7. Also, the

reversed hazard rate function is:

2-ﬁ(T) (r) = fﬁ(r){Fﬁ([) (F)}::L

2 %,,1 (k- 1)27r2 T 7
(2k—1)27r2T} '

8T
Z((Zk Nz 2+?Jem{f 2r?

N

(6)
See figure 8.
10T T T T T T T
: 1 .
_ ' '
: ;
8 H I
g1 ;
= 6t H p
z e !
T A /
g B
2 m

L L L L
0.0 05 1.0 15 20 25 3.0

Reversed Hazard Rate Function of the Range

05 1.0 15 2.0 25 3.0

F

Figure 8: Reversed hazard rate function of the range.
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It is clear that, the hazard rate approaches zero
as the range r increases, and increases rapidly
as r falls to zero. For the new distribution of

TDWR, the hazard rate function is:
Orery (1) = Iy {Grey (N},

and it is represented in figure 9.

10T

— T 0.2a 05b 7
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- T 06a07b5
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Hazard Rate Function of BRW
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02

‘ . -
00 Lt = e

Figure 9: Hazard rate function of TDWR.

In addition, the reversed hazard rate function of
TDWR is:

éR(T) (r)= gR(T){GR(t) (N},
see figure 10. Also, in this case the hazard rate

increases rapidly as r falls to lower bound a.
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Figure 10: Reversed hazard rate function
3.2 Moments of TDWR.
Many interesting characteristics and features of

the range distribution and TDWR can be
studied through its generating function and

moments. For the range distribution (1)
Withers and Nadarajah [2] found its generating,
characteristic functions and moments. Here, if
R has TDWR distribution and a<r <band
T >0then the moment generating function
(m.g.f.) of R defined by:

M (t) = E(e")

(2k-1)2 72r 2T

Z;((Zk ) ~+8r° TJe 2

(2k-1)2 7z2Tb 2

+8Tb‘2je 2

T2

tr

[¢)

dr

!

/ﬁ\

2 (2k — 1)2 2

k=1
(2k-1)*7°Ta?
78 +8Ta™? |e 2
“| (2k —1)2 72

xMS

-1
2

.
— I(a,b,t, T
| 1@btT)

- 8 (2k-1)*7°Tb™?
-2 2

Z((Zk T +8Tb Je 2

(2k-1)% 7z2Ta™?

© 8 B —
_Z((2|(_1)27[2+8Ta Zje 2

N2 2
o - 82 s, g, - @k
2k -1)27 2

Since the expansion of the exponential function

is valid for re(—oo,00)and the series is

uniformly convergent, then we have

o m
€ =1+tr —%+Z—

m!

(Ji

m=0

=1+tr——+iztm ﬂ( j (=B ) 3.
u=0

m=2 m

3
||
N

Assume that,
I(a,b,t,T)=1,(a,b,t,T)+1,(ab,t,T) where,
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e
L@btT)=> [ael dr

k=1 3

:ij‘a{l+tr—ﬂg+iitm#( j( BT ms*‘)dr

k=1 r- msuo m
©)
and
o boa [y B
Iz(abt,T)=ZIlie( rZjonr
k=13
b _
— ‘w _& SAY tm “(m _ M opm=2-3u
_az_l:.!:(lﬂr = +m22§ - (#j( B)Ar Jdr.
(10)
By solving the following equations:
m-3u=-1, (11)
m-2-3u=-1, (12)

as Diophantine equations, we have the set
solution for (11) is given by:
S, = (Mg, 5 ) ={(21),(5.2),(83), (11.4)...},

(13)
and for (12)
S, = (Mg, us,) ={(41),(7,2),1033), 134),.. }
(14)

Hence, 1,(a,b,t,T)can be written as follows:

=~ a b

| (ath)—Zak[(b a)+— (b2 a ) ﬂk(i_lj}

V' m,(u# pg) AMm=mg, )

ak[ii( J ( ﬂk) t (bm+13y_am+l3y):|

mi(m+1—3u)

a{ [ j(—/)’k) (o '”bj'
(momyes; \ A m! a
(15)

Also, 1,(a,b,t,T)can be written as follows:

ot oty AL L
I2(a,b,t,T)_aZ[(a b )+t|na 3[a3 b3ﬂ

v m,(u#us, Am=mg, )

RN AL (=gt m-1-3u _ ,m-1-3u |
a5 S3 M) CANE o arr)

k=1| m=2 u
A S m (_ﬂk ) m—u b
+a3 EAI s 2|
k=1 \ (m.myes, \ M m: a

(16)

Consequently, from (15) and (16) we obtain
the value of (8). Hence,
M (t) = E(e")

(2k-1)272r 2T

T2|& 8 ) - )
22((2k 0o ~+8r 2Tje 2 e'

b
- .!: w» 8 S 7(2k—1)22;zsz’2
2. 7(2k—1)27r2 +8Th™ |e

dr

(2k-1)2 z%Ta2

% i8Ta Je 2

{TZ (1,(a,b,t,T)+1,(a,b,t,T))

(2k-1)2 z2Tb~2

+8Tb2je_ 2

& 8
2 (2k —1)* z?

k=1

—Z((Zkl)zz+8Taz Je 2
17)

Also, the moments of R about the origin can

be obtained as: E Ir Orery (N)dr.

(18)

To solve (18), we let, x=rT 2/2 and

= (2k —1)° z2 /8 then (3) become,

2| | A ep(-ox )
T2

v ()= 23] + ot ep(—mx 2) |,
|2 = x (0t +2x72)
(19)
where,

o0 8 _(2k-1)?7°Tb™?
-2
e 8 _(2k-1)?z°Ta"?
-2
_z(—(2k—1)27z2 +8Ta je 2
Since the series,

o [(~4x7 &p (-, x?))
= + Qo x 2 exp(—w X)) (o +2x7?)
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is uniformly convergence series, then we get,

l oo
ExX)==—> A,,
b)==>a,
(—4x° exp (-, x?))
qu + Qo x?exp(—w,x7?)) |dx

a

where,

x (o +2x7%)

Thus,

o w, b2+ @
s} od ]

a-4+q§[ 1+ﬂ ﬂ}
2 a ,
+ 2w,
b~*9& —1 ﬂ’&
+ 5[ +2 bZJ

where £is the exponential integral function.

Consequently,
a2+ q @ p-2+a qa o
SR R b

i *4+q§[ ﬂ 7k:|
- 2’ a?
= 20, a
+bag —14 9 D
gy

E(xq):

o 8 _(2k-1)27?Tb 2
-2
Z((Zk ET +8Tb je 2

_(2k-1)*7*Ta?
+8Ta™? Je 2

1
By substation again with x=rT 2/2 and

= (2k —1)° z* /8 then we get:

—2+Q§ ﬂ (2k _1)27[2
a4 2’ 8a?
29T 22
k=1 2+Q§ q (2k l) —|—7L
8b? “

E(rq):

(2k-1)*7°Tb?

kzl:((zk ST 5 +8Tb” j 2

o _(2k-1)*z°Ta’?
Z((Zk “a , +8Ta™? Je 2
k=1
(20)
where,
a—4+q§|:_1+ﬂ1 (2k _122”2:|
N _(2k —1)* 72 2 8a
=

2 8b?
In addition, the characteristic function can get

from the equation:

4 +b4+qg{ 1+ q,&}

M (1) = E(e™)

—1
2| _@kDExErET |
T Z( 8 — +8r’2Tje 2 e'tr
MIEEEE
= S dr
- w 8 (k)P ?Th 2
>S|-—=—5—>+8Tb? |e 2
o\ Rk -1 7
«» (k12 x?Ta?
78 +8Ta? |e 2
2k -2z
a,b,t, -+ a,b,t,
( b,t,T) I( b,t,T)
. _(2k—1)?7*Tb~?
+8Tb 2
2k — D222 1)
oc _(2k-1)?x?Ta?
- 7+8Ta’2 e 2
2k -2z
(21)
where,i =+/-1,

(b—a)+i—t(b2—a2)
Il(a,b,t,T):kZ:;ak y [1 1)

a b

v m,(u#ps, Am=mg, )

(m] CAY O (s g )}

mi(m+1-3u)

: M) (5" vmwy D
+;ak((mm551(ﬂj (i) Ina}

and
_l@t=b")
I,(ab,tT)=4a>" +it|n9—&[i—ij
k=1 a a.2 b2
Y m,(u#ps, Am=mg, )
= o M — Dy “ (i)™~ m-1-3u m-1-3u
E| ST |
+ai( ( J( b (ut)”‘”lnbj
k=1 \_(m,u)es, \ H

3.3 Stress-strength parameter

In this we
Y = P(R(rz) < R(Tl)) ' R(Tl)
R(T,) are two independent random variables

distributed as in (1) with T,, T,, respectively. In

the statistical literatureY is known as the stress-
strength parameter which describes the
changing of stock price. In addition, Y has a

random strength R(T,)that is subject to a

find
and

section,
when
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random stress R(T,). The changing in stock

price at the instant that the stress applied to it
exceeds the strength, and the changing will

function satisfactorily whenever R(T,) > R(T,)

; see, for example, Church and Harris [6]. Thus,
for the range distribution, Y can be expressed
as:

Y = [Py (BT,) foq, (T, ).
0

And, for TDWR(T,) and TDWR(T,)
distribution, we find that Y = P(R(T,) < R(T,))
whereY has a random strength R(T,) that is

subject to a random stress  R(T,).
- b

Consequently, Y =_[GR(T)(r;Tz).gR(T)(r;Tl)dr.

Now we find Y’ by assuming that,

= 8
Q= kz_ll((Zk —1)2 7?2
_(2k-1)?7*Tia?
_Z[(Zk e +8T1a‘2]e 2 '
® 8 (2k-1)? z°T,b 2
Q=) | o
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—Z ——— —+8T,a’le z
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where,
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T e
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Aol ST}
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b
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F T, +Ng T,

—ae

R T+NT,
2 2
+be b

r(o FT,+ NKTZJ
a

2

2 LN, T,

— 1"(0’ I:LTl ;zN KT2 )

and
J,(a,b,T,,T )_J.r’1 e N g R gy
F.T, +NT
—F(O, L 1a2 K 2)

2 +F[O, FT, ;ZNKTZ j

Consequently,
N |

T, 2|[T,?

2 || 2

<1
||

'S J(ab T,
o0, @b

_|
N

C.e™ ™D J,(abT,T,)
+C,e M 8T J,(a,bT,.T,) |

QAQ, iEtE +BkDLJ3(a,b,T1,T2)]

+B,8T,J,(a,b,T,,T,)

(22)

Similarly, we can find
Y = [P (BT,) foq, (T, )R,
0

3.4 Order statistics

For the European minimum (or maximum)
options, Goldman et al. [16] defined and
derived the closed form pricing formula. The
exact distribution of the maximum and the
minimum of the prices-path had been available
among the established results in the field of
mathematics (Probability Theory). There are
several studies in the literature including
Bergman [17], Kemna and Vorst [18],
Kunitomo and Takahashi [19] and Tumbull and
Wakeman [20], they determined the probability
distribution of the geometric average of the

prices when the underlying asset price follows
the log-normal distribution, and the closed
form for the option prices were obtained.
However, the closed form pricing formula for
the arithmetic average options do not seem to
be derived yet except for a special case in
Bergman [17]. The approximated pricing
formula and the algorithms for them are quite
well studied. The difficulty seems to be in
deriving the exact distribution function of the
average price. This make the order statistics are
among the most fundamental tools in non-
parametric statistics and inference. In this part,
we discuss some properties of order statistics
for TDWR.

Let R, <R,, <..<R,, denote the order

statistics of a random sample R, R,,...,R, from
the TDWR. Then the p.d.f. of the p™ order

statistic R, s,
M(Geer (1)) =Gy (1)) Gy (1)
“\MR(M) R(T) gR(T)
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Also, the distribution function of R is
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In addition, the g™ moment of the p™ order

)

b j

x J' 91— Frq,(r)) dr

a

statistic R s,

E(R!)=q Z(—

j=n—-k+1

Let,
j

b
N :J.rqfl(l_ FR(T)(r)) dr;

Zk =_—8a2;and
(m —2kx)
2 2
G, =2 7T
2
Then,
1 i
b 2| w | .
N; :_frqfl 1- (Zke’G“ﬁl +8re & ) dr.
a k=1
AISO, Iet = _Z<Zke—Gka’2 +8re—Gkr*2 )

k=1
From Binomial uniforms theorem we get:
. p p
@-u) =>1" (-1 'u’
i\ J
Thus,

b
N =[ret-u)dr
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where Ei gives the exponential integral

function. Also, at j =2 we obtain,
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By the same method we can obtain

b
N =[ret-u) dr.

3.5 Bonferroni curve, Lorenz curve and
Gini’s index
Recently, studies of the stock price has gained
a lot of importance. Some important measures
in this studies are the Lorenz curve and Gini’s
index. Lorenzcurve and the associated Gini
index are undoubtedly the most popular indices
of income in equality. Giorgi and Mondani [9]

and Giorgi [10] shown that Bonferroni curve is
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such a measure, which has the advantage of
being represented graphically in the unit square
and can also be related to the Lorenz Curve and
Gini ratio. Giorgi and Crescenzi [11] presented
that these measures have some applications in
reliability and life testing as well.

Since Rbe a non negative random variable
with cumulative distribution function (4) which
is smooth (i.e., continuous and has derivatives
of all orders). However, the first moment of R
about zero is finite, exists and non zero as in
(20). The Lorenz curve is useful in business
modeling: e.g., in consumer finance, to
measure the actual percentage of delinquencies
attributable to the percentage of people with
worst risk scores. Lorenz curve can be obtained
by using the equation,

[ r9re (rdr

L(9rey (M) =+
[ r9e, (rdr

o a—2k)2 72T
4T , 2a’
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The Gini index which is defined as a ratio of

the areas on the Lorenez curve is given by:
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C is given above.
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S=2(1-2k)*(b— a)nzTF[
2a’

1-2K)?x }
and A =—-4a%(b—-a)e 27T Also, the
Bonferroni curve is given by:

L(9rr) (M)
By (9 (1) = Ga, (1)
where L(ggr, (r)) is given by (22) and from
(4) we get Gy (1).
4. Application
The oscillation between the fall and rise of the
stock price within a time period T can be
expressed by a Wiener process. The difference
between the highest and the lowest value of the
stock price it called the range R of the Wiener
process. When the selling price becomes equal
to the cost price then R=0 and when the
share
price up to the upper limit barrier (the upper
limit that the stock price has already been
reached and reversed to decline) then R =oo.
In the upper limit barrier case, the analysts
believe that the stock price became expensive
and there is no rush to buy it. In this case,
sudden drop in the market index may occur
while the stock did not reach the point of sale.
To avoid a sudden drop in the share price sale
we should study the behavior of R by studying
some its statistical properties as in Withers and
Nadarajah [2]. To ensure that no loss, we
should put an upper limit barrier (to avoid
sudden drop) and lower limit barrier greater
than O (a guarantee of a gain even if few).
Thus, we wuse (3) and (4) to getthese
statistical properties of the bounded range. In
[2], Withers and Nadarajah supposed that

1
Xx=rT 2/2 where the values of x are given.

Here, we let the truncated values of
X.,x=12..5 for the corresponding time
periods are T, ,v=12,..,5, then we get the
values of the lower limit barrier a and the

upper limit barrier b. Also, we obtain the
values of R, the probability density function

and cumulative distribution function of R are
given in Table 1.

The most important information for the
company that builds its decision in order to
choose the right time to sell the stock when
a <R <b is to know the mean value of R.
From (17) we find that the mean value of R
is depend on the values of a,b and Tas

follows:

‘T?l 4(b2 2)2 +8T InE

‘ 2 (2k Oz a
M. (O = (k12 7?Tb 2

;((Zk D7 2+8Tb’2je 2

e
=\ 2k -7

Also, the mean values of R for the
corresponding time periods T,,v =12,....5 are

given in Table 1.

By using mathematica 7 , we found that
1000000 8

kzzl“ (2k =) 7?
M,(t) we get the values of the probability

~1. Thus, in (3), (4) and

density function, cumulative distribution
function and the mean values of R
asin Table 1.
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Table 1: The probability density function, cumulative distribution function and the mean values

of R.
T, a<r<bh r Zriry (1) Gy (1) M (T)
14.14 0.359021 0
15.2 0.383331 0.3941
15.5 0.3899 0.531761
50 14.14 <71 <19.799 15.556 0.389935 0.531762 5.90706x10’
16.5 0.404273 0.906967
17.3205 0.293429 0
17.59 0.298058 0.18806
18.2 0.307531 0.264483
75 17.3205 < r <24.248 18,5 0.311711 0.357377 7.23679 %10’
19.0526 0.318651 0.53159
24.495 0.207485 0
25.2 0.213385 0.148396
26.3 0.221321 0.38762
150  24.495<r<34.2929 26.944 0.225316 0531461 1.02351x10°
27.2 0.226782 0.589331
28.284 0.179672 0
29.95 0.189531 0.30787
30.12 0.19041 0.340165
200  28.284<7r<39.59798 31113 0195119 0531639 1.1818x10°
32.12 0.199212 0.730238
31.6228 0.160714 0
32.23 0.16382 0.0985405
34.785 0.174528 0.531547
250  31.6228<r<44.2719 3554 0.177046 0.664283 1.32133x10°
36.2 0.179039 0.781801
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5. Concluding remarks

In this paper we introduced a truncated
distribution for the range of a Wiener process.
This distribution is the best for the stock price
in a limited range. We provided a mathematical
treatment to find some statistical properties
including reliability properties, moments,
stress-strength  parameter, order statistics,
Bonferroni curve, Lorenz curve and Gini’s
index. A real data set is analyzed to clarify the
effectiveness of this distribution. We hope that
this distribution may attract a wide applications
in lifetime modeling.

In future research one can introduce a new type
of middle and random truncation for the range
of a Wiener process.
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Appendix A
To get a double truncated density function of
1
1 2
TDRW, we putx=rT 2/2, a:aTZ ,
1
bT 2

b =

, and o, =(2k -1)°72/8, then (1)

(the probability density function of the range)
become:
(~4x7 exp(-ox™))
() =Y+ o exp(-0,x7) |
- x (@ +2x°2)
And, its cumulative distribution function is
given by:

O, (x) =Y (0, +28 %) exp (-, x ?)

k=1

Consequently,

®, @)= (0" +28 %) exp(-,a %) and
k=1

O, (0) =3 (e, +2b?)exp (-0, 2) If

k=1
a < x <b then the double truncated density
function can get from the equation:

— X
b= — I
@, (b) - @ (a)
(-4x7° ep (-0, x*))
D+ Qo exp(-o,x 7))
U (ot +2x7?)
Z:(a)k_l +2b %) exp(-mw.b ?)
k=1
(o +2a)exp(-o,a7?)
k=1
Now by substituent again with
1 1 1
2 2 _ 2
X:rT , g:aT ’ b:bT and
2 2

o, =(2k =1 7%/8 then the density function
of TDWR is given by:
fﬁ(T)(l’)

I' r)= —
rery (1) Fﬁ('r) (0)-— Fﬁ('r) @)

(k1?7 T

1
Tz|& 8 .
2;‘((%—1)27;2 o ZTJe 2

_(2k-1)*z*Tb?

+2Tbh™? Je 8

o 8
2 (2k —1)% 72

= 8 @k e
-2
_Z((Zk—l)zizz +2Ta je 8

k=1

Using integration by parts one can shows that
b
[T (ndr =1.
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Introduction

Intersection graph theory is one of the most
important topics in graph theory. There is an
outstanding concise book titled : "Topics in
Intersection Graph Theory" by Terry A. McKee
and F. R. McMorris [1], in which the most
developed topics of intersection graph theory,
emphasizing chordal, interval competition
graphs, threshold graphs, p-intersection graphs,
intersection multigraphs, pseudographs, and
tolerance intersection graphs are discussed.
Here we obtaied the number of edges in two
intersection graphs, namely power set
intersection graphs and functional intersection
graphs. Stirling numbers arise in a varity of
analytic and combinatorics problems. We need
stirling numbers of the second type in
calculating the number of edges of functional
intersection graphs. For these numbers the

reader is advised to see [2]

1. Power set intersection graph

1.1 Definition. Let X := {xq,x,,...,x,}. Let
P(X) be the power set of X, i.e. P(X)={A]| A S
X}.The power set intersection graph is G=
(V,E), where V "corresponds to" P (X), and
two vertices in V are adjacent if and only if the
two corresponding subsets in P(X) have a non-
empty intersection.

1.2 Theorem. For a set X := {x;, x5, ..., X, },the
power set intersection graph G = (V,E),
has |[V|, number of vertices = 2", and |E]|,
number of edges = % (4"-3"-2"+1)

Proof. |V| = 2" is trivial. Now let A C X, |A]
(number of elements of A) = m. The degree of

the vertex v,, which "corresponds to" the set

A=2n-2n"m_1 |t follows that :

1 n _
Bl =2%n () @@n-2n 1) =

Lo > Lo > () <§>m—§m2=1 (m)

m=1
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-1 5npon_ 1 5n Ln_ _
==.2"(2"-1) ~.2M((+ )" 1)
1oon_
> (2"-1)
- 22n—1 _ 2n—1 _ l 3n+l
2 2

== (4"-3"-2"+1)
1.3 Example. The number of vertices of the

power set intersection graph corresponding to
the set X := {1,2,3}, is 23= 8.

The number of edges = % (43-33-2341) =15

Oe
13 1

23 2

Figure 1 shows such a graph, where the vertex
"123" corresponds to the subset {1,2,3}, the
vertex "0" corresponds to the empty set .
There is an edge joining the vertices "123" and
"12", since the subsets{1,2,3} and {1,2}
intersect

2. Functional intersection graph Fig.1

2.1 Definition. LetL:={f | f : X - Y}, be the
set of all functions from X into Y. The
functional intersection graph G has vertices v¢
and v, "corresponding to" the functions f and g
of L. The vertices v¢and vy are adjacent if and
only if range (f) and range (g) have a non-
empty intersection.

2.2 Definition. Stirling number of the second

kind SP*[1] is equal to the number of ways of

partitioning a set of m elements into r non-

empty subsets,

1 T
s 2y (e () sm

2.3 Remark. The number of all surjective
functions from X onto Y, where |X| = m, |Y| =
n, n < m is equal to n! S;'. Consequently, for
the set of all functions f : X — Y having the
same range, consisting of r elements, the
corresponding is a complete graph consisting of
r! S/ vertices. We note that the number of all

functions defined from X into Y

-xp (risp=nn
as it is well-known.

2.4 Theorem. The number of edges of the
functional intersection graph G corresponding

to the set L := {f|f:X - Y}, whereX :=
{x1, %5, e, }, Y :={y1, V2, ..., Y0}, IS €qual to

1 1 n
> nm(nm-1) - 3 Te1 (r) rl Sft(n—r)™

nsm

1 1 n

-n"(n™-1) = ;":1( )r! St(n—r)™
2 2 Tr

m<n

Proof. To explain the situation, we plot every
complete subgraph of the same number of

vertices in the "same plane”, as follows :

P,: G ,Gy,...,Gp=> (711) subgraphs

n
Py: Gip,Gi3,... ,Gpoqpn=> (2) subgraphs

n
Py 0 Gip3 5 Giga s .., Gpogpo1n = (3)

subgraphs

P.: Gy ys... = (Z) subgraphs
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P,_, Giz.n-2 > - = (nfz) - (Tzl)
subgraphs

Ppy t Giaop-1s - i(nf1) :(711)
subgraphs

P,: Gy = (Z) = 1 subgraph

(G2, 1s the complete subgraph corresponding
f:X-Y X =
{x1, %2, e, }, Y = {¥1, V2, ..., Y0}, their range
is {1,2, ...,r}. This complete subgraph consists

to all funcations

of r! S vertices, as said before )
Casel: n<m
d,, the degree of any vertex in a subgraph in

plane P; is given by:

= ox(5)-("7 2 sp(3)-
("3 )zsye

+((nE 1) - (E : }) ).(n—1)! Srrln_l‘“(ﬁ) n!
Sa'

=5 (arsy -z (" ) psp

=n"-n—((n-1)" - (n—-1))
=n™-(n-1)m-1
d,, the degree of any vertex in a subgraph in

plane P, is given by:

21+() = ("3 D2 see(3) -

(ngz)).3!5§n+...

(o2 5) - () -2y
it ) (- DS

+(E) nl SM

d,=

n o fn—2
=2-1+38,(3) e sz - (" )
S§'

=2=-14+n"-n—-((n—-2)"—- (n—-2))
=n™- (n—-2)™-1
d,, the degree of any vertex in a subgraph in

plane B. is given by:

a1n(3) ("3 P

("3 7))3sme

o) = (o) =rorsie,

o L= (D)n

s3H(3) -

r—1+22=2(2)a!
n—r

sw-3ph(Cp )BISF
=r=14+n"-n-(n—7r)"— (n—r))
=n™- (n —r)m-1, n<m
Now the number of all vertices in plane P, is
given by :
N, = (rrl) rsm,
hence |E|, the number of edges of the graph G
IS given by :
|El= =27, Ny d;

- Ly (“) rl S™((n™—1) — (n —

r
™)

= 2 @z ()) s -
S xam-nm () sy

= 2 amem - -1 30, (0) s (-
rm,

Case2: m<n.

ns<m O
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Here some modifications have to be done. The
number of all functions defined from X into Y
IS given as in case 1 by

m (D) e sp=nm
The

Py—2,Pm-1, Py are indicated as follows :

complete  subgraphs in  planes

= (mri 2) subgraphs

Pnz: Giz.m—2, .-
Pp_1: Gi2.m-1, -

:>(m i 1) subgraphs

= (::l) subgraphs

Now d,, the degree of any vertex in a subgraph

Pn:Gizams---

in plane P; is given by:

on(3)- (5 )2

(ngl))3!5;,"+...

H(ym ) - (AT Den - s,
(o) = (" Dyt

d= Zi () smon - @ (M5 ) e

= 57+((3) -

SE- (n-1))
=n"-n—((n—-D" - (n-1))
=nm-(n-1)m-1

To find d,, the degree of any vertex in a
subgraph in plane B. we have two subcases :

Subcase (i) :n—r<m, here

(-7 sr)-

("3 )3y

W) CIDre s,

n—r

d.=

+(H—II}+ 1) (n—r+1)! Sntre1t...
)t S

= r—1+ZZ‘=1(Z)a! Sg'-n -

n—r

(g )BESF- (- 1)
=r—=14+n"-n-(n—r)"— (n—r))

=n"™-(n—r)™-1 (thesameasincasel)

Subcase (ii):n—r>m
r((p) - (T )2 see(3) -
("3 7))3sme
() = )yt si

= r—1+ZZL=1(Z)a!

i (") B0

=n™-(n—-r)"-1

d,=

m
Sg'-n -

(the same as in case 1

Now, as before, N, is the number of vertices in

plane P. which is given by :

N, = (rrl) rsm,
hence the total number of edges of the graph is
given by :

1
IEI :E ;"n=1 N;.d;

= (D) s (e - 1) -

n—7r)™)
|E| =

N R W~ NIFP

("= DI () s -
3 S = () v s

1 1 n
= " =1 =2 S () TS (-

™, m<n 0O
2.5 Example : X := {x;,x,,%x3,%4,x5}, Y =
{y1,¥2, 3}

The number of vertices of the corresponding

functional intersection graph =3°= 243
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The number of edges = % X 243 %242 -

hence |E| = % x 125 x 124 - %( 5 x64+10

% 3_.(3—1)° (1?:) rl S5 x27x6+10%8x6 )
:29403-%(32><3><1!515+3><2!S§+ — 7750 _ 1210
0), = 6540
where S?=1, References
2! §3= Y2_,(-1)%*s (i) s5=-2+25= 1. McKee, Terry A. and McMorris, F. R.,Topics
30, in intersection graph theory, (1999) SIAM.
1 2. Boyadzhiev, Khristo N., Clouse encounters
hence |E| =29403--(96 +90) ) o )
2 with Stirling numbers of the second kind
= 29310 (2012) Mathematics magazine, 85 (4) pp 252-
2.6 Example X = {x,x5,%x3}, Y = 266.
1 Y2,¥3 ¥4, s}
Number of vertices =53= 125
|E| = number of edges = % x 125 x 124 -
S () e-mn st
where S3=S53=1
s3=2 320 (2) $* =3
el adldl

558 adaldi sy g8 W) JSED 8 adal oy (e B be Leghe JS (ulSE (3 Caa ) aae Cluay Canl 1as 8 Liad
Login Ol U cpded (i lalial oy dad) (i) o iy nd 5 O Joal s iall 5 peaie () L jualic e 433
J)sall 3 kbl oa Awgy ) ol an ) s SE JSAN 5 Goal) sda dae aed ) Lapall Laa gl | adals
Q\A)m\jsddcjdgu\dw\@g;)';{j\M\}J@c a W palic e 5 Jaddl oo Lalaa) (008 (1 48 el
Gl Ui g lalii Laginn Lagie S (520 Coand D) (el (il il all o iy Cpadl 5 0 Josl 51 a5 aaiie

Cadl o sa ge s LS daally (o A 2ae
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A proposed method for solving multiobjective linear fractional programming
problems with rough coefficients

El-saeed Ammar and Mohamed Muamer

Department of Mathematics, Faculty of Science. Tanta University. Tanta, Egypt

Abstract: In this paper, a new method for solving multiobjective linear fractional programming
problems with rough coefficient (MORLFP) is proposed. The MORLFP problem is considered by
incorporating rough intervals in the coefficients of the objective functions. It is provided that a
MORLFP problem is converted to an optimization problem with rough interval valued objective
functions which it their bounds are four multiobjective linear fractional functions. The rough efficient
solutions are characterized by using a new proposed algorithm. A numerical example is given for the
sake of illustration

Key words: Multi objective linear fractional programming problems, Rough interval, Rough interval
function.
1. Introduction

Fractional programming concerns with the sciences, especially in the areas of machine
optimization problems of one or several ratio learning, decision analysis, and expert systems
functions subject to some constraints. Decision Pal [13]. Rough set theory, introduced by
makers sometimes, may face up with the Pawlak [12], expresses vagueness, not by means
decision to optimize actual cost/standard cost, of membership, but employing a boundary
output/employee, etc with respect to some region of a set. The theory of rough set deals
constraints. In management problems, both the with the approximation of an arbitrary subset of
ratio functions profit, cost and quality to be a universe by two definable or observable
optimization are conflicting in nature. Such subsets called lower and upper approximations.
types of problems are inherently multiobjective Tsumoto [19] used the concept of lower and
fractional programming problems. upper approximation in rough sets theory,
Pawlak [11] defined rough set theory as a new knowledge hidden in information systems may
mathematical approach to imperfect knowledge. be unraveled and expressed in the form of
Kryskiewice [8] uses rough set theory to decision rules. The concept of rough interval
incomplete has found many interesting will be introduced by Lu and Huang [9] to
applications. the rough set approach seems to be represent dual uncertain information of many
of fundamental importance to cognitive parameters.The associated solution method will
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be presented to solve rough interval fuzzy linear
programming problems.

Chakraborty and Gupta [3] a different
methodology had been proposed for solving
multiobjective linear fractional programming
(MOLFP) problems always yielding an efficient
solution and reduces the complexity in solving
the (MOLFP) problems.. Tantawy [18] proposes
a new method for solving linear fractional
programming problems. Effati and Pakdaman
[5] introduce an interval valued linear fractional
programming (IVLFP) problem. They convert
an IVLFP to an optimization problem with
interval valued objective function which its
bounds are linear fraction function. Sulaiman
and Abulrahim [14]

technique for solving multiobjective

use transformation
linear
fractional programming problems to single

objective  linear  fractional  programming
problem through a new method using mean and
median and then solve the problem by modified
simplex method. Guzel [6] proposes a new
solution to the multiobjective linear fractional
programming (MOLFP) problem. Thus MOLFP
problem is reduced to linear programming
problem. Sulaiman and Abulrahim [17] uses a
new transformation technique for solving
multiobjective linear fractional programming
problems to single objective linear fractional
programming problem through a new method
using arithmetic average and new arithmetic
average technique and then solve the problem
by modified simplex method.

This paper deals with a new method for solving

MORLFP problem. The MORLFP problem is

considered by incorporating rough intervals into
coefficient of the objective functions of the
problem. The MORLFP problems are converted
to four optimization problems. An algorithm is
proposed for characterizing the solutions
concept of the MORLFP problems. A numerical
example is given for the sake of illustration.

2. Preliminaries

2.1 Linear fractional programming
problem:
The general linear fractional programming

(LFP) problems are defined as follows:

N(x)

Max e

Subject to:
xEX={x€eR": Ax<b, x=0},

c’, dTeR"a, PER , bE R™
A g R
Where N&)=c"x+a,Dx) =d'x+p

are real valued and continuous functions on
Xand d'x+p #0

Theorem 1. [6] z* = I;g; = % if
and only if

F(z*,x*) = Max{N(x) —z*D(x) ,x €
X} =0.

2.2 Multi objective linear fractional

programming problem
The general multi objective linear fractional
programming (MOLFP) problems written as:
Max z(x) = {z,(x), z5(x), ..... z;(x)}
Subject to:
xEX={xeR": Ax<b,

cix+a; _ Nij(x)
dix+B;  Di(x)’

Ci,dl’ € R”,ai,ﬁi ER Di(X) > O,
foralli=1,2,..,k.

x>0},

where z;(x) =
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Definition 1. x* € R™ is an efficient solution
for MOLFP problems if there is no x € R"
such that MZN"(X*), =12,.k and
Di(x) = Di(x*)
Ni@) o NG or at least one i .
D;(x) Di(x*)
Theorem 2. If X is an optimal solution of

Max{Xi; wi(N; (x) —

(z)*(Di(x))), x € X}

_ Ni(x*) _ M

= = X Vi) for all
Di(x™)

where is (z;)" )
i=12 ..k,

w; €W ={w; e RMw; > 0,3k  w; = 1}
then X is an efficient solution of MOLFP
problems.

The proof of this theorem is much similar to the
proof given by Guzel in [6].
2.3

programming

Rough interval linear fractional

Definition 2. Suppose [ is the set of all
compact intervals in the set of all real numbers
R . If A€l then we write A = [a , a]with

al < aY and the following holds: [5]

i. A=>0 iffx;>0 forallx; €A.

ii. A<O0 iffx; <0 forallx; €A.
Definition 3. Let X be denote a compact set of
real numbers. A rough interval X is defined as:

XR = [ x®AD, xWAD] where
X@AD gnd xWAD are compact intervals denoted
by lower and upper approximation intervals

of XR with x(4D ¢ xWAD,
Definition 4. For the rough interval X the

following holds:

XRx 0, iff x@D> 0 and
X(UAI) > 0

X0 , iff XxW<o0 and
xwan <,

In this paper we denote by I% is the set of
all rough intervals in R . Suppose AR ,B® €
: AWAD | and

BR — [B(LAI)

IR we can write AR = [4XAD
also

BWAD ] where
AQAD — [a—L’ a+L]’ B (LAD [b_L, b+L]

al a*t, b7l and bl e R.

Similarly we can defined A(UAD | p(UAD),
Definition 5.
AR BR

[9] For two rough intervals
when AR >0 and BR >0
we can define the following operations on
rough intervals as follows:

D AR + BR = [[A(LAI +B(LAI)] .
[A(UAI) _l_B(UAI)]]

Such that:

[A(LAI) + B(LAI)] — [a—L + p-L ’a+L +
b*t]and

[A(UAI)+B(UAI)] — [a—U+ b'U,a+U+ b+U].

2) AR — BR = [[A(LAI _ B(LAI)] .
[A(UAI) _ B(UAI)]

Such that:

[A(LAI) _ B(LAI)] =[at— b*L, a*l-

b~L]and

[A(UAI) _ B(UAI)] — [a—U — ptU ) atV —

bU].
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3) AR xBR = [[At4D x ptAD]
[A(UAI) % B(UAI)] ]

Such that:

[A(LAI) % B(LAI)] — [a—L x b7l a*tlx
b*‘]and

[A(UAI) x B(UAI)] — [a‘” x b7V, atlUx

b+U] )

4) AR /BR = [[A(LAI)/B(LAI)] :
[A(UAI) /B(UAI)] ]

Such that:
[A(LAI) /B(LAI)] — [a—L/ b+t a+L/
b~*] and
[A(UAI)/B(UAI)] — [a—U/ hty a+U/

b~Y].
Definition 6.[5] Let I be the set of all closed
and bounded intervals in R .
A function f:R™ — I is called an interval
valued function with  f(x) = [fL(x), fY(x)
] where for every x € R™, fL(x), fY(x) are
real valued function ,with fX(x) 2 fY(x).
Definition 7. A function f:R"
called a rough interval function with
FRO) = [0 (x) + fUAD (x)] where

every x € R, fLAD(x), FWAD(x) are lower

- IR s

for

and upper approximation interval valued
functions, with FEAD(x) <
D (x)

Proposition: [10] Let f be a rough interval

function defined on X ¢ R™ and x, € X . Then

f is continuous at x, if and only if f®4D(x)

and £U4D (x) are continuous at x,

3. Problem Formulation
The
programming problems with rough coefficient
(MORLFP) are defined as follows

multiobjective linear fractional

NR(x) cRx+aR
Max{ZR(x) == =L :
700 =B = v st
=1,2,...k}
Subject to:

xEX={xeR™ Ax<b, x>0}

@)

where ¢k, df, af and BReIR  Ais

an m X n constraint matrix, b € R™,k >
2.

We can rewrite problem (1) as follows:

[ciLAIx+aiLAI: ciUAIx+af’A1 ] .
Max {ZLR(X) = [P+ BEAT . qUAT, 1 pUAT | L=
1,2 ..., k}
Subject to:

xEX={xeR" Ax <b, x>0}

)
The objective function in (2) is a quotient of
two rough interval functions. Using the
definition of operations on a rough intervals

we have

LAI LAI UAI UAI

R 7 xtag ¢ xta; .
Z; (x) = [ : L=
i LAI LAT UAI UAI
d; x+ﬁi d; x+,Bl-

12..k (3) Now
equations (3) can be written into the form:

ZR) = z(x): 2/ (x)] Where
zH(x), z'*(x) lower and upper

multiobjective approximation interval valued

linear are fractional functions defined as:
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-L -L _+L +L
[c; "x+a; ", ¢; "x+a; ]

LAI
Z; X) = = =
L ( ) [dl Lx+BiL' di+Lx+ﬁi+L]
- -U +U +U
c; “x+a; Y, ¢ U x+a;
and ZFAI(x):: [ju /- l+U]’
[di"x+B; " , d; “x+B; "]
forall i=12..,k

Using the theorem (2-1) in [5] we can write

equation (3) as the following:

ZR) = [ 27000, 2 @]+ [ 27V (),

Z?U(x)]], (4) where
z7hx) ,  zt(x) , z7 V(%) and
ztU(x), forall i=12...,k

are multiobjective linear fractional functions

defined as:
—L —-L
~L ¢ xta; +L
Z. x = — Z. x =
ORI A(C)
Cl:H'x+(X?—L
dilx+pyt”’
-U -U
-U ¢ xta; +U
z: " (x) = 2+—— and z™(x) =
V) = o ()
CL:'—UX+(X?—U
d;Ux+p7Y
Forall i=1,2...,k.

Now the problem (1) can be converted into
multiobjective rough interval linear fractional
programming (MORLFP) problems as follows:
Max {Z} () = [[ z7"(x), 2 (0] :
[ z77(0), 20l %,
Subject to:
xEX={xeR™ Ax<b, x=0}. (5
Forall i=12...,k
By using the arithmetic operations and partial
ordering relations, we decompose the MORLFP
problem (5) can be the following four sub
problems defines as:

Py

Nl-+U(x) _ cL-+Ux+o:L-+U j =
D)~ d;Ux+p;V " T

Max z}U(x) =

1,2..k

Subject to:
xXEX={xeR™ Ax<b, x>0}
P,

Ni_U(x) ci_Ux+ai_U .
_ i =

—U T +U
D; 7 (x) ;" x+p;]

Max z7Y(x) =

1,2..k
Subject to:
xEX={x€eR™ Ax<b, x>0}
z; Y (x)Maximize value of z}V(x)
Py

Nl-JrL(x) _ cl-+Lx+ai+L .
Dit(x)  a;lx+prt

Max z}"(x) =

1,2 ...,k
Subject to:

xXEX={xeR" Ax<b, x>0}
max value of z;V(x) < z'"(x)

< Max value of z}Y(x)

Py
- N7t cilxtart
Max z"(0) =405 = ATt gt
=12k

Subject to:

xXEX={xeR™ Ax <bh, x>0}

maximum value of z;Y(x) < z7t(x)
< Maximize value of z™*(x)

Now using Theorem (2) for socialization
problems P;, P,, P;and P, which are MOLFP
problems to the equivalent form which are
linear programming (LP) problems ( P{,P;, P;
and P, ) as follows:

P;:
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T o (NGO = ) DY), i =
12,..k }
Subject to:

xEX={xeR™ Ax <bh, x>0}
P, :

Max {315 w; (N7Y (x) —
Z7' D (x)),i=12,..,k }

Subject to:

xXEX={xeR™ Ax<bh, x>0}
z7V(x) < Maximize value of z}Y(x)

P; :

K
Max {Z wi (N () = (2Dt () i

=1
=1,2, k}

Subject to:
xeEX={xeR™ Ax < b, x = 0}
maximum value of z7Y(x) < z'(x) <
Maximize value of z;Y(x)
P, :
Max {Zi; w; (N7 — (Z7")' Dt () i =
1,2,..,k }  Subject to:
XxXEX={xeR" Ax<b, x>0
maximum value of z7V(x) < z7'(x) <
Maximize value of z}"(x)
Where w€EW= {wi:Zle wi=1 w; >
0,i=12..,k}
Theorem 3.[4]
solution for LP problems

x* €eRI

If x* e R™ is an optimal
P/,i=1,2,3,4 then

is an efficient solution of the

corresponding
1,2,3,4 .

Definition 8.
solution of MORLFP problem (1) if there is no

NE@) o NE@)
DR(x) 7 DR(x*)

MOLFP problems P; ,i =

x* € R™ is a rough efficient

x € R™ such that =12,..,k

NR(x) _ NE)

DR~ DR for at least one i

and

Theorem 4. If x* € R" is an efficient solution
of the problems P; ,i =1,2,3,4 then x* € R"

is a rough efficient solution of problem (1).

4. Algorithm solution for MORLFP
problem :
We construct the algorithm for solving a

MORLFP problem as follows:

Stepl. Convert the problem to the form of
MORLFP problem (5).

Step2. Transfer the problem (5) to four
problems on forms P;, P,, P;and P, which
are MOLFP problems.

Step3. Find the maximum value of each

objective function of P,, P, , P; and P, as:

v _ Ni(x) _ N;i(x)
(Zl) - Di(x*) - N——— Di(x)
xeX
Step4. Use the weighting method to

convert each problems P;, P,, P;and P, to
single objective in the form P, P;, P; and P,

respectively.
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Step5. Find the optimal solution of each
linear programming LP problem P;, P;, P;
and P,.

Step6. Using the results of step5, obtain a
rough efficient solution to the given
MORLFP problem by the Theorem 3 and

Theorem 4. with objective value:

Z} (x) =[[z7x"), Zit )]
Z7°(x), ZF ] |

foralli=1,2..,k

The algorithm is illustrated with

following example.

5. Numerical example:

Consider the following MORLFP problem:

Max Z,(x) =

[[15, 2.5]:[1,3]]xq 4[[2.5, 3.5]:[2, 4]]x,

[[1, 2]:[0.5, 3]]xs +[[2, 31:[1,

51]x2 +[[2, 51:[1, 71] ’

Z,(x) =
[[2, 41:[1,5]]x1+[3, 5]:[2, 6]]x:
[[3, 5]:[1, 71]xq +[[2,51:[1, 6l]x, +[[2, 31:[1, 4]]
Subject to:

X +%x, <5, 3x;+x; <

2x1 +x, <7, x <3,

Now the decomposition problem of the given

MORLFP problem as in the following form:

Max{ 77U (x) = Stttz

5X1+6X2
X1+Xo+1

J

0.5%;+x5+1 "’

10

237 (x) =

— X1+2XZ -U
MaX{ZUX =—,7, (X) =
1 () 3x1+5x2+7' 2 ()
X1+2X2 }
7X1+6X2+4
2.5X1+3.5X2 +L
Max{z“‘x =—1 2 7K =
1 ( ) X1+2X2+2 ’ 2 ( )
4-X1+5X2 }
3X1+2X2+2
- 1.5%1+2.5%;, —L
MaX{ZLX ==2reon oo l(x) =
1 ( ) 2X1+3X2+5 ’ 2 ( )
2X1+3X2 }
5X1+5X2+3
Subject to :

X1+X2S5, 3X1+X2S10
2X1+X2S7, X1S3, X1,X220

Now construct the four problems and solving as

follows :
P;:
+U — _3X1tix, +U —
Ma { Zl (X) - 0.5X1+X2+1 ’ ZZ (X)
5X1+6X2 }
X1+X2+1
Subject to:

X1+X2S5, 3X1+X2S10

2X1+X2S7, X1S3, Xl,X220

Itis observedthat 0 < zfY<3.71  and
0 <zfV<s
This MOLFP problem is equivalent to the

following LP problem can be written as:

P/

Max {w,(3x; + 4x, —3.71(0.5x%; + x, +
1)) + w,( 5%y + 6%, —
5(x; + %, + 1)}

Subject to :
X +%X, <5, 3x;+x, <10

2X1 +x, <7, X <3, Xq, X220
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Forw; = w, = 0.5

The optimal solution of the LP problem Pjis
obtained as: x;,* =0, x,* =5

The efficient solution of MOLFP problem P,
are:

x:" =0, x," =5 with objective value

z7Y =333, z;VU=5.

P,:
-U _ X1+2X, -U _
MaX { Zl (X) - 3X1+5X2+7 ! ZZ (X)

X1+2X2 }
7X1+6X2+4’
Subject to:

+2 42

_XiveX2 <333 ) Xt g ,

3X1+5X2+7 7X1+6X2+4
X1+X2S5, 3X1+X2S10
2X1+X2S7, X1S3, Xl,X220
It is observed that 0 < z;Y <031  and

0 <z,Y<0.29.
This MOLFP problem is equivalent to the

following LP problem can be written as:

P,:

Max {w; (x; + 2x; — 0.31(3x; + 5%, +
7)) + w, (%1 + 2x, —0.29(7 x4 + 6%, +
M)}

Subject to:
3):1-;1:17 < 3.33, 7xi-;:i4 =5
X1 +%x, <5 3x;+x, <10
2X1+ %X, <7, X1 <3, X4, X220

FOF W1 = Wy = 05
The optimal solution of the LP problem P, is

obtainedas: x;* =0, x,” =5

The efficient solution of MOLFP problem P,

are:

X, =0, x,” =5 with the objective value
z7Y =031, z;Y=0.29 .

P;:
2.5X1+3.5X2 +L
MaX{Z+LX=— 77 (x) =
1 ( ) X1+2X2+2 ’ 2 ( )
4-X1+5X2 }

3X1+2X2+2

Subject to :

2.5X1 + 3.5X2
031 < ——— < 3.33,
Xq + 2%, + 2

S 4X1+5X2 S 5 ’

3X1+2x,+2

X1+X2S5, 3X1+X2S10,

0.29

2X1+X2S7, X1S3, Xl,XZZO

0 <z"<157 and

It is observed that

0 <zjl'<208
This MOLFP problem is equivalent to the
following LP problem can be written as:

P5 :

Max {ool(Z.S X, + 3.5%x, — 1.57(x; + 2x, +
2)) +
2.08(3 x1 + 2%, + 2))},

w, (4x4 + 5x, —

Subject to :

2.5X1+3.5X2
X1+2X2+2

0.31 < < 3.33,

0 29 < 4X1+5X2

3X1+2x,+2
X1+X2$5, 3X1+X2S10,

2X1+x, <7, x4 <3, X1,X, =20 .

For w; = w, = 0.5

The optimal solution of the LP problem P; is
obtained as: x;* =0, x," =5

The efficient solution of MOLFP problem P; are
value

x;"=0, x,* =5, with  objective

zit =146, z;* =2.08
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P, :

—-L _ 1.5X1+2.5X2 -L _
Zl (X) - 2X1+3X2+5 g ZZ (X) -

Max {

2X1+3X2 }
5X1+5X2+3
Subject to :

1.5%x1+2.5x
031 < ———=2
2X1+3X2+5

< 146,

2X1+3X2
5X1+5X2 +3

X1+X2S5 3X1+X2S10,

0.29 < < 2.08,

.2X1+X2S7, X1S3, Xl,XZZO

Itis observed that 0 < z;“<0.625 and
0 < z;X <0.54
This MOLFP problem is equivalent to the
following LP problem can be written as:
Py:
Max {w; (1.5 x; + 2.5x, — 0.625(2x, +
3%, +5)) +

0.54(5 x4 + 5x, + 3))}

w,(2xq + 3%, —

Subject to :

1.5x,+42.5
031 < =17=2%2
2X1+3X2+5

< 1.46,

2X1+3X2
5x1+5%x5+3

X1+X2S5, 3X1+X2S10,

0.29 <

< 2.08 ,

2X1 +x, <7, X, <3, x1,X, =0

For w; = w, = 0.5

The optimal solution of the LP problem P, is
obtainedas: x;* =0, x,” =5

The efficient solution of MOLFP problem P,are:

x;"=0, x," =5, with value
z7Y = 0.625 , z;“ =0.54.

The rough

MORLFP problem is x;* =0 ,x,* =5 with

objective

efficient solution of original
the rough objective value

z} = [[0.625, 1.46] : [0.31, 3.33]],

z8 = [[0.54, 2.08] : [0.29, 5]].
6. Conclusion

A new approach is proposed for solving
multiobjective linear fractional programming
problems with rough coefficients (MORLFP)
problem. For treating the problems use the
method of Effati and Pakdaman to convert the
MORLFP problem into four multi objective
programming  MOLFP
problems. By the method of Dinkelbach, the
MOLFP problems is

programming LP problems .

linear  fractional

convert to linear
An algorithm is
established for characterizing the solutions
concept of MORLFP problems .
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Abstract: This paper is to generalize the concept of convex body to the so called relative convex body
in Euclidean space E™. Some geometrical and topological properties for this kind of sets are discussed.
Some properties of the central projection map(Beltrami map) introduced to discuss these concepts in

the hyperbolic space H"..
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Introduction:

The concept of convex bodies have an
important role in differential geometry and
represent a very interesting fruitful area of
research.

In the last years a lot of mathematicians
generalized convexity notion in Euclidean
space E™ . Such as K-convexity[4], D-
starshaped sets[3], Invexity[2], and Relative
convexity[5].

A new kind of generalized convex body for sets
in Euclidean and hyperbolic spaces is
presented, this kind is called relative convex
body. Also some geometrical and topological
properties for this kind are discussed. Before
this discussion let us survey some definitions
and results that help us in this work.

Definition(1).

A subset B of the Euclidean space E™is an open
set if it consists entirely of interior points
in(B), hence if B = in(B). A subset BCE™ is
a closed set if it contains its boundary Bd(B),
hence if B D Bd(B).[7]

Theorem(2).
(1)The Euclidean space E™ and the empty set
are open (closed) sets.

(2)The union of any number (finite number)of
open (closed) sets is an open (closed) set.

(3)The intersection of a finite number (any
number) of open (closed) sets is an open
(closed) set.

Theorem(3).
The following statments are equivalent

(1)B is a closed set, that is B J Bd(B).

(2)The limit points to B, Lp(B), belong to B,
that is B D Lp(B).

(3)If the neighbourhood
@,v8 = 0,thenp € B.

N(p,8)NB +

(4)The complement of B is an open set.

(5)B is its own closure,Cl(B), that is B =
CL(B).

WhereN(p,8) = x € B:d(p,x) < 6.[7]

Theorem(4).
For any set B, the following statments are hold:

(1)The interior In(B) and the exterior Ex(B)
are open sets, hence In[In(B)] = In(B).

55



H. K. EL-Sayied

Relative convex body in Euclidean and hyperbolic spaces

(2)The closure CL(B) is a closed set, hence
Cl[CL(B)] = CI(B).

(3)The boundary Bd(B) is a closed, hence
Bd[Bd(B)]C Bd(B).

(4)The derived set Lp(B) is a closed set, hence
Lp[Lp(B)IC Lp(B).[7]

Definition(5).

A subset S C E™ is a convex set if for each pair
of points x,y € S it is true that the closed line
segment [xy] joining x and y lies wholly in
S.[1,8]

Definition(6).

Let B be a subset of the Euclidean space E™
and A be a subset of B. The set A is a relatively
convex set with respect to B if for each pair of
points p, q € A the closed segment [pq] joining
p and q lies wholly in B.[5]

In the following some results are introduced as
given in [5].

()If A, and A, are relatively convex with
respect to B, then A; N A, relatively convex
with respect to B. On the other hand for
A; U A, the above result is no longer valid.

(2)Every subset A CE™ is relatively convex
with respect to any of its supersets.

(3)Every subset A is relatively convex with
respect to its convex hull. Moreover, each
subset is relatively convex with respect to any
convex superset.

(4)If A is a relatively convex set with respect
to B, then every subset of A is relatively
convex with respect to B.

(5)Let ACE™ be a subset. If every subset
B CA is relatively convex with respect to A,
then A is convex.

4-Relative closed and relative open sets

In the following section, we shall introduce
some definitions and results on relative closed
and relative open sets.

Definition(7).
Let B be a subset of the Euclidean space E™
and A be a subset of B. The set A is said to be a

relatively closed with respect to B if every limit
point of A belongs to B.

We denote to the set of all limit points of the
set A by A’. Which is called the derived set.[7]

Proposition(8).
The empty set is relative closed set with
respect to any set A.

Proof

Let the empty set @ be not relative closed with
respect to A. Then, there exists a limit point of
@, say x, such that x dose not belong to A.
Since the empty set has no limit points, Then
this is a contradiction. Therefore, the empty set
is relative closed with respect to any set A.

Corollary(9).
The Euclidean space is relative closed with
respect to itself.

Proposition(10).

If A; and A, are relative closed with respect to
B, then A;NA, and A; U A, are also relative
closed with respect to B.

Proof

Firstly, since A, and A, are relative closed with
respect to B, then A,,A,CB and A}, A,CB,
Thus (4; N A,)CB. Let x be a limit point of
Ay N A, then, x € (A; N A;)" C (A1 N A3), this
implies that x € Ajax € A,, then x €B
Hence A; N A, is relative closed with respect to
B. Secondly, simillarly we have (4, U A,)CB
and Aj UALCB, if x is a limit point of
(A1 UA,), then x € (A4; UA,) = (41 U 43).
Therefore x € A7 or x € A’,. Therefore x € A}
or x € A}. Therefore, x € B. Hence, A, U A4, is
relative closed with respect to B.

Proposition(11).

The set Ais relative closed set with respect to
itself if and only if A is closed.

Proof

(1)If A is closed, then A contains all limit
points of A. Hence A is relative closed with
respect to A.

(2)If A is relative closed with respect to itself,

then A contains all limit points of A. Thus, A is
closed.
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Proposition(12).

If A is relative closed with respect to B, then
the closure of A is relative closed with respect
to the closure of B.

Proof

Since A is relative closed with respect to B,
then we have ACB and A’C B. This implies
that A C CI(A)C CL(B). Since CL(A) is closed,
then (CL(A))'C CL(A) C CL(B), hence CL(A) is
relatively closed with respect CL(B).
Remark(13).

(1) Every closed set A is relative closed
with respect to any of its supersets.
(2)Every subset is relative closed with
respect to any closed superset.

Corollary(14).

Every set A is relative closed with respect to
ClL(A).
Proposition(15).

If A is a relatively closed with respect to B,
then every subset of A is relatively closed with
respect to B.

Proof

Let x be any limit point of C C A C B, then for
all open set G containing x, we have (G —x) N
C # @ implies (G —x) N A # @. This means
that x is a limit point for A. Since A is relative
closed with respect to B. Hence, x belongs to
B. Therefore, C is relative closed with respect
to B.

Corollary(16).

If A is relative closed set with respect to B,
then the interior of A is relative closed with
respect to B.

Lemma(17).

If A is relative closed set with respect to B and
C, then A is relative closed with respect to both
BnCandBUC.

Proof
Since A is relative closed with respect to B and
C, then we have

ACB,A'CB (1). And
ACC,A'CC (2).

From (1) and (2), we have AC(BnC) and
A'C(BNC). Hence, A is relative closed with
respect to B n C. Simillarly, it is easy to see
that A is relative closed with respect to B U C.

Theorem(18).

If A and B are two relative closed sets with
respect to C, then AnB and AU B are also
relative closed sets with respect to C.

Proof
Since A and B are relative closed with respect
to C. Then

ACC,A'CC(1). And
BCC,B'CCQ).

From (1) and (2), we have (AnB)CC
and(A'nB")CC. Therefore (ANB)'CC.
Hence (AN B)is relative closed set with
respect to C.

Simillarly, it is easy to see that (AU B) is
relative closed with respect to C.

Proposition(19).

If A is relative closed set with respect to both B
and C such that B € C. Then, there exists a
proper subset W CB such that A is relative
closed set with respect to .

Proof
()If € CB, we putW = C. Hence, A is relative
closed with respect to W.

(2)If CZB and B ¢ C (given), then we have
(BNC)CB. Let W= (BnC), W is a proper
subset of B. Since A is relative closed with
respect to both B and C. From the above
lemma, we see that A is relative closed with
respect to W.

Proposition(20).

Let A be a subset of the Euclidean space E™. If
every subset of A is relative closed with respect
to A, then A is closed.

Proof

If BCA is a relative closed with respect to A4,
then A contains all the limit points of the subset
B. This is also true when we take B = A,i.e. A
contains all the limit points of A. Therefore, A
is closed.
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Definition(21).

Let BCE™ and ACB. The set A is called
relative open set with respect to B if for all
X € A, there exists an open set G containing x
such that x € G C B, i.e; G is entirely in B.

Remark(22).
(1)The empty set is relative open with respect
to any set.

(2)The Euclidean space E™ is relative open
with respect to E™.

(3)The interior of a set A is relative open with
respect to A.

(4)Let A CE™ be a subset. If every subset B C A
is relative open with respect to A. Then A is
open.

Proposition(23).
The set A is relative open with respect to A if
and only if A is open.

Proof

(1)If A is open, then for all x € A, there exists
an open set G containing x, such that x €
G CA. Thus A is relative open with respect to
A.

(2)If A is relative open with respect to itself,
then for all x € A, there exists an open set G
containing x, such that x € G C A. This means
that A is open.

Theorem(24).

If the two sets A; and A, are relative open
with respect to B, then A, N A, and A, U 4,
are relative open with respect to B.

Proof

(1)Since A; and A, are relative open with
respect to B, then we have A; CB and A, C B,
thus (A;NA,)CB. If x € (A;NnA,), then
X € Ajax € A,. Again since A; and A, are
relative open with respect to B, then there exist
the open sets G; and G, such that x € G; CB
and x€G,CB. Thus x€(G;nG,)CB.
Therefore A; N A, is relative open with respect
to B.

(2)Since A, CB and A,CB, then (4,U
A;)CB. Let x € (A; UA,), then x € A; or
X € A,. Since A; and A, are relative open with
respect to B, then we discuss the following
cases:

(@)If x € A;, then there exists an open set G,
containing x such that x € G;CB , then
A; U A, is relative open with respect to B.

(b)If x € A,, then there exists an open set G,
containing x such that x € G, CB, then
A; U A, is relative open with respect to B.

(3)If (A1 N A,) # @. In this case, we see that @
is relative open with respect to B.

Proposition(25).

If A and B are two relative open sets with
respect to C, then (AN B) and (AU B) are
relative open with respect to C.

Proof

For all x € (AnB), we have x € Arx € B.
Since A and B are relative open with respect to
C, then there exist the open sets G; and G, such
that x€ G, CC and x€G,CC. Hence,
x € (G, N G,) CC. Therefore, A N B is relative
open with respect to C. Simillary, it is easy to
see that A U B is relative open with respect to
C.

5-Relative convex body

In this section, we define relative convex body
and study some geometrical properties for this
concept.

Definition(26).

Let B subset of E™, and A C B. If the subset A
is bounded and relative closed with respect to
B, then A is called relative compact with
respect to B.

Remark(27).

(1)If A is relative compact set with respect to
B, then every subset of A is relative compact
set with respect to B.

(2)If A is relative compact set with respect to
B and C, then A is relative compact set with
respect to both BN C and B U C.
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Definition(28).

Let ACB, A is called relative convex body
with respect to B if the following conditions are
satisfied:

(1)A is relative compact with respect to B.
(2)A is relative convex with respect to B.
(3)A has non-empty interior.

Definition(29).
The relative convex surface is the boundary
of the relative convex body.

It is easy to see that

(1)if the two sets A, and A, are relative
convex bodies with respect to B. Then, we
have

1)(A; N Ay) # @ is relative convex body with
respect to B. (

i)A; UA, is not relative convex body in
general.(

(2)Every non-empty subset A C E™ is relatively
convex body with respect to E™.

(3)Every convex body is relatively convex
body with respect to any of its supersets.

(4)If A is a relatively convex body with

respect to B, then every non-empty bounded
subset of A is relatively convex body with
respect to B.

Proposition(30).

If A is a relative convex body with respect to
both B and C, such that B is not a subset of C.
Then there exists a proper subset W C B such
that A is relative convex body with respect to
w.

Proof
(1)Assume that € C B and put W = C. Hence A
is relative convex body with respect to /.

(2)Assume that C ¢ B and( B ¢ C,given), let
W = (B nC(C), clearly W is a proper subset of
B. Since A is relative convex body with respect

to both B and C. Therefore, we have A is
relative convex body with respect to /.

6-Relative convex in hyperbolic space

Now we devote our study to the concept of
relative convex in hyperbolic space H™. The
most convenient model of the n-dimensional
hyperbolic space for the present work is the
spherical one H™ which might be defined as
follows [8],[5]:for

nl

and also in the metric, where V™*1 denotes the
Minkowski space (R™1,<,>) with the
pseudo-Riemannian metric <, >=
—dx'Qdx* + Y dx'Odx*. The metric when
restricted to H™ yields a Riemannian metric
with constant sectional curvature K = —1[5].
As H™ is a complete simply connected
Riemannian manifold with negative sectional
curvature, then each pair of points p,q € H"
are joined with a unique geodesic segment [8].
Therefore, H™ is starshaped. The Beltremi(or
central projection)map B:H™ — E™ is defined
to be the map which takes x € H™ to the
intersection of the Euclidean space x! =1
with the straight line through x and the origin 0
of V™*1, The map pB takes the whole of H"
diffeomorphically to the open ball B(p,1) of
radius 1 and center at p = (1,0,0,...,0).
Furthermore, the map g is a geodesic map and
so K-totally geodesic submanifolds of H™ are
mapped under # onto k-planes in E™. We can
also show that closed, open, compact, bounded
and starshaped subsets of H™ are mapped under
B to subsets of B(p,l) of the same type. It
worth mentioning that the inverse of map g has

the same properties of 5.[6]

Lemma(31).

The central projection map preserves limit
points of sets.

Proof
Obvious.
Proposition(32).

The central projection map preserves relative
closed property of set.
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Proof

Let B be a subset of H™ and A is a relative
closed set with respect to B. Then, for any limit
point of A, say x, belongs to B. If we apply the

central projection map S, then we have B(x) is
a limit point of B(A4) and B(A4) CB(B). Since
X € B, then B(x) € B(B). Therefore, f(x) is a
limit point of B(A) CB(B) and B(x) € B(B).
Hence, B(A) is relative closed set with respect
to B(B).

Proposition(33).

The central projection map preserves on
relative open sets.

Proof

Let B be a subset in H™ such that is relative
open set with respect to B. Then, for any
x € B and there exists an open set G containing

x such that x € G CB. If we apply S then

B(x) € G'CB(B). Therefore the centeral
projection map preserves on relative open sets,

where B(G) = G' is open set.

Proposition(34).

The central projection preserves on relative
convexity.

Proof

Let B be a closed connected set in H™ and A be
a subset of B. Assume that x,y in A and the

closed geodesic segment ,say axy, which is
determined by x and y is in B. Then if we

apply B and assume that the closed segment

[B(x)B(¥)] is not in B(B), this means that
there exists at least one point belongs to

[8(x)B(y)] but not belongs to S(B), which is a
contradiction with the fact that g preserves on

the interior, exterior and boundary points of B.
Hence B(x), B(y) are in B(A) and [B(x)B(¥)]
is in B(B). This implies that S(A) is relative
convex with respect to S(B).

Corollary(35).

the central projection map preserves on the
concept of relative convex body.
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