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Abstract In this paper, we introduce a new solution of the Euler’s dynamic equations for the rotational 

motion of a rigid bo dy about a fixed point under the action of a Newtonian force field. The 

components of the angular velocity vector for this solution are differing from the most famous cases. 

We assumed that the center of mass of the rigid body coincides with the fixed point and a restriction 

on an initial condition is applied. The obtained solution is represented graphically using most recent 

computer codes to describe the motion at any time and is considered as a modification of Euler’s case. 
 

Key words: Euler’s equations, Rigid body motion, Newtonian field 

Introduction: 

The rotational motion of a rigid body about 

a fixed point in a Newtonian force field is one 

of the important problems in theoretical 

classical mechanics. This problem attracted the 

interest of many researchers during the last five 

decades e. g. [1-7]. The great importance of 

this research subject is due to the wide range of 

its applications in mechanics. To solve these 

problems we need to deal with intricate 

techniques because they are governed by a 

system contains six non-linear differential 

equations besides with three first integrals [8]. 

The exact solutions of such systems require an 

additional fourth algebraic first integral. Many 

researches realized such integral for famous 

special cases, which have some restrictions on 

the body center of mass location and on the 

torques acting on the body [9]. 

The perturbed rotational motion of a heavy 

solid close to regular precession with constant 

restoring moment was treated in [2] and [3]. 

The authors assumed some initial conditions to 

achieve the analytical solutions of the 

 equations    of    motion     using       

averaging  method [10] up to the first and 

second approximations. The rotatory motion of 

a symmetric gyrostat about a fixed point when 

one component of the gyrostatic torque is 

applied and in the presence of some torques 

was considered in [4] and generalized in [5]. 

The motion of an electromagnetic gyroscope is 

investigated in [6] when a Newtonian field, 

perturbed moments and restoring ones are 

applied. The averaging technique [10] is used 

to obtain the first order approximate analytical 

solutions. The graphical representations of 

these solutions are presented to describe the 

motion at any instant. The rotational motion of 

that body under the action of a Newtonian 

force field with the application of the third 

component of a gyrostatic moment is 
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investigated in [7]. The approximate periodic 

solutions of the governing 

 equations are obtained using the small 

parameter method of Poinacré [11]. This 

method and its modifications [12-13] are used 

in [14] to construct the periodic solutions of 

limiting case for the motion of a rigid body 

about a fixed point in a Newtonian force field. 

The rotational motion of a heavy solid about 

a fixed point in the presence of a gyrostatic 

moment vector is presented in [15]. The 

authors supposed that the body has rapidly 

spinning about the major or the minor principal 

axis of the ellipsoid of inertia. Krylov-

Bogoliubov-Mitropolski technique [10] is 

modified and used to achieve the periodic 

solutions of the equations of motion. 

The perturbed self-excited rigid body 

problem with a fixed point is investigated in 

[16]. The averaging theory [17] is used to 

study the periodic orbits up to first order. In 

[18], the authors presented the possibility of 

constructing exact analytic solutions 

concerning the dynamic Euler equations of 

motion. 

The spinning motion of the hovering 

magnetic top and its dynamic stability were 

analyzed in [19] and [20]. The numerical 

integration of a heavy magnetic top is 

investigated in [21]. 

Existence of periodic motions of a rigid body 

was investigated in [22]. The small parameter 

method was used to obtain the periodic 

solutions of the equations of motion. The 

center of mass of the body is slightly shifted 

from a dynamically symmetric axis. The 

generalization of this problem was treated in 

[23] when the body rotates under the action of 

a Newtonian field and in the presence of one 

component of the gyrostatic moment vector. A 

new exact solution of the equations of motion 

of a rigid body is investigated in [24] when the 

body moves under the action of a uniform 

force field. The author assumed that the center 

of mass of the body is located at meridional 

plane and the principal torques of inertia 

satisfied a simple algebraic condition.  

In this work, we extend the previous studies 

when the rigid body moves under the action of 

a Newtonian force field arising from an 

attracting center located on the downward 

fixed axis. We assume that the center of mass 

of the body coincides with the fixed point 

(origin). The achieved solution is obtained 

after taking account some algebraic 

assumptions concerning on the moments of 

inertia. This solution is represented 

graphically, in the rest of this paper, to show 

the behavior of the body motion under the 

action of Newtonian   force   field.  From this 

point of view, 

 the current study may be regarded as a 

modification of Euler’s case for the motion of a 

rigid body.  

2. Equations of motion 

Consider the motion of a heavy rigid body 

that rotates about a fixed point O , in the body, 

under the influence of a Newtonian force field 

arising from an attracting center 1O  being 

located on a downward fixed axis passing 

through the fixed point O .  Let OXYZ  be a 

fixed coordinate system and another moving 

one Oxyz  which is fixed in the body and 

whose axes are directed along the principal 

axes of inertia of the body with origin O . The 

equations of motion are given below [14] 

,)()()(

,)()()(

,)()()(
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BCNyzgMqrBCpA













 (1) 

with  

,
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213

132321


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pq

rpqr








    

(2) 

where BA,  and C  are the principal moments 

of inertia of the body; qp ,  and r  are the 

projections of the angular velocity V  of the 

body on the principal axes of inertia; 

),,( 321    is  the unit vector in the 

direction of the Z -axis; M  is the mass of the 

body; g  is the gravitational acceleration; 

00 , yx  and 0z  are the coordinates of the center 

of mass in the moving coordinate system Oxyz   

The overdot here refers to differentiation with 



 

 T. S. Amer   Higher estimates for the solution of a heavy rigid body movingunder the action of a Newtonian force field 

 

12 

respect to the time t  and )/3( 3RN   where 

R  is the distance from the fixed point O  to the 

attracting center 1O  and   is the coefficient of 

such center. 

Equations (1) and (2) admit the following three 

first integrals 

,2)()

(2)(

,
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  (3)        

where 0C  and 1C  are constants.  

3. Euler’s case 

As in Euler’s case, we obtain the following 

first fourth integral according to the presence 

of Newtonian field  

.)

(

2

0
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3

2

2

2

1

222222

CABCA

BCNrCqBpA


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(4) 

Making use of the first two integrals in (3) 

and the fourth integral (4), one obtains 

.,,
0

3

0

2

0

1
C
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C

Bq

C

Ap
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(5) 

Substituting from systems (1) and (2) into 

the third equation of system (3), one gets 

,

])1()1()1[(
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where 
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Equation (6) represents a linear combination 

of the first integrals (3), the fourth integral (4) 

and (5). So, we seek for a solution that satisfies 

the previous equation (6). 

 

4. The modified solution  

For our scope, let us consider the following 

choice together with the assumptions of Euler’s 

case 

 .CBA   

This choice allows us to rewrite equation (6) 

in the form 

  ,
2

1

2

3

2

212

AN

rCNqBNC
p



 
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  (7) 

where 

.1,1,1 2

3

2

2

2

1   CNNBNNANN  

Substituting from (7) into (4), we can obtain 

directly 
2q   in the form  

.2
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(8) 

Here, 
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2
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The substitution from (8) into (7) gives 

./)(

,/)2(

;

13527

14216

2

76

2

ANCNCBNC

ANCBNCC

rCCp








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(9) 

Substituting from equalities (8) and (9) into 

the third one of the system of equations (1), we 

get 

.
))((]/)[( 2

5476

 


dt
rCCCCCBA

rd
 

Under the present circumstances, the solution 

of the previous integration can be obtained 

easily as 

 

.;}))((]/)[({ 1

5476 constktCCCCCBAkr  

(10) 



 

 T. S. Amer   Higher estimates for the solution of a heavy rigid body movingunder the action of a Newtonian force field 

 

13 

An inspection of equations (8), (9) and (10), 

broadly speaking, provides the solution of the 

problem when the rigid body rotates under the 

action of a Newtonian force field. This 

elucidates that, we can separately determine the 

components of the angular velocity vector p , 

q  and r as functions of time t  from these 

equations. Consequently, we can obtain 

directly the scalar value of the angular velocity 

vector in the form 

 ]
)(

1
[)(

2

8

57

64
tCk

CC
CCVV




 ,  

 

(11) 

where 

)()(]/)[( 54768 CCCCCBAC  . 

5. Discussion of results  

In this section, our aim is to provide some 

numerical results using the computer programs. 

The following data are used to determine the  

 motion in the considered problem 

22

222

/.)500,400,200(,/8.9

,100,.4,.6,.7

smkgNsmg

kgMmkgCmkgBmkgA




 

Figures (1-4) show the variation of the 

angular velocity V versus time t  in 2-D plane 

when 
2/.200 smkgN   and 

2/.400 smkgN  . 

It is to be noted that, the value of the angular 

velocity of the body monotonically increases 

with the increase in time (see figures 1, 3) till it 

has attained its maximum value whenever 

8Ckt  , i.e. when the dominator of the 

second bracket in equation (11) vanishes, at 

different values of Newtonian force field. The 

domain of equation (11) is }{}0{ 8Ck  

and its range is }0{
, where   is the 

positive real numbers, 0)( 64 CC  and 

0)1( 57  CC .  

 

Above the value 8Ckt  , the numerical 

computations show that the angular velocity  

gradually decreases as the time goes on, in a 

similar manner to its increase, (see figures 2, 

4). Further, we observe that the growth in the 

value of Newtonian force field leads to 

increase in t  and V as well. 

To make the results more favor, we proceed 

to illustrate the numerical results in 3-D space. 

Figures (5-7) and (8-10) represent the behavior 

of the angular velocity V and time t  via 

)( tV   when the Newtonian  force  field  

equals  to  200  and  400, respectively. It 

should be noticed that figures (5, 8), (6, 9) and 

(7, 10) describe the behavior of the body 

below, near and above the maximum value of 

time t , respectively. The spatial figures for 

most values of Newtonian force field are 

presented; see figures (11-16). 

It is clear from all previous figures that, the 

Newtonian force field has acquired a 

significant influence on the behavior of our 

model. Such results may be utilized in many 

industrial applications in various fields; like 

satellite, spacecraft and manipulators. 
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6. Conclusion 

In this work, we have developed a modified 

solution, represented by (8)-(10), for the 

Euler’s dynamic equations (1) with the aid of 

Poinsot’s equations (2), when the rigid body 

rotates under the action of a Newtonian force 

field. The obtained angular velocity 

components are different from Lagrange’s 

case, Kovaleveskaya’s case, Euler’s case 

(when the body rotates without any applied 

torques) or from any special case. A restriction 

on the choosing of initial conditions of 

)0(),0(),0(),0(),0( 21 rqp  or )0(3  

according to the meaning of 2

0C  is considered. 

The obtained solution is considered as a 

modification for both Euler’s case and Ershkov 

[24] work when the Newtonian filed has no 

effect, i.e. vanishes. The graphical 

representations of the obtained angular velocity 

solution are presented through different 

figures. The numerical results have shown that 

the Newtonian force field value has an 

important effect on the rigid body motion. 

However, the analytical results of the rotational 

motion of a rigid body about a fixed point can 

be exploited in industrial applications, such as 

satellites, autopilots and aircrafts. 
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 حقذٝشاث أعيٚ ىحو جسٌ ٍخَبسل ثقٞو ٝخحشك  ححج حأثٞش ٍجبه ّٞ٘حّٜ٘

فٜ ٕزا اىبحث حٌ دساست إٝجبد حو جذٝذ ىَعبدلاث أٗٝيش اىذْٝبٍٞنٞت ىيحشمت اىذٗساّٞت ىيجسٌ اىَخَبسل ح٘ه ّقطت ثببخت ححج حأٝش 

ٖزا اىحو حخخيف عِ ٍعظٌ اىحبلاث اىخبصت ٍجبه ّٞ٘حّٜٞ٘، ٍع الأخز فٜ الاعخببس أُ ٍشمببث ٍخجٔ اىسشعت اىضاٗٝت اىخبصت ب

اىَشٖ٘سة، ٗبفشض أُ ٍشمض اىنخيت ىيجسٌ اىَخَبسل ْٝطبق عيٚ ّقطت الأصو ٍع حطبٞق ششٗط إبخذائٞت ٍعْٞت. ٗحٌ حَثٞو اىحو اىزٛ حٌ 

 لًا ىحبىت أٗٝيش.اى٘ص٘ه إىٞٔ ْٕذسٞبً ببسخخذاً بشاٍج حذٝثت ٗرىل ى٘صف اىحشمت عْذ أٝت ىحظت صٍْٞت، ٗٝعخبش ٕزا اىحو حعذٝ
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Associated graphs and chain maps  

E.EL-Kholy and N. El-Sharkawey 

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt 

Abstract:In this paper, we defined the associated graph constructed to a cellular folding defined on regular CW-

complexes. These graphs declare the effect of a cellular folding on the complex. Besides we studied the 

properties of this graph and we proved that it is connected and vertex transitive if the cellular folding is neat. 

Finally, by using chain maps and homology groups we obtained the necessary and sufficient conditions for a 

cellular map to be cellular folding and neat cellular folding respectively.  

Key words: 

Cellular folding, chain map, regular CW-complexes, vertex transitive, neat folding. 

1-Introduction: 

The study of foldings of a manifold into anther 

manifold began with S.A. Robertson's work on 

isometric folding of Riemannian manifolds [10]. 

After several attempts of generalizing the notion of 

isometric foldings, regular foldings were first 

studies by S.A. Robertson, H.R. Forran and E.El-

Kholy [2]. The notion of cellular foldings is 

invented by E.El-Kholy and H.A.AL-Khurassani 

[1]. Different types of foldings are introduced by 

E.EL-Kholy and others [3, 4, 2]. 

(a) A cell decomposition of a topological space 

X is a decomposition of X into disjoint open 

cells such that for each cell e of the 

decomposition, the boundary eee  is a 

union of lower dimensional cells of the 

decomposition. The set of cells of a cell 

decomposition of a topological space is called 

cell complex, [9]. 

A pair ),( X consisting of a Hausdorff space 

X and a cell- decomposition  of X is called a 

CW-complex if the   following three axioms are 

satisfied: 

1- (Characteristic Maps): For each n -cell e

there is a continuous map
 

XDne  :  

restricting to a homeomorphism
    

eDnDe
n

 )int(:
)int(

 and taking 
1nS into 

1nX  . 

    2-(Closure Finiteness): For any cell e the 

closure e   intersects only a finite number of 

other cells in 


.  

    3-(Weak Topology): A subset XA is 

closed iff eA  is closed in X for each 

e
, [8].  

A CW-complex is said to be regular if all its 

attaching  maps are homemorphisms. If each closed 
n -cell is homeomorphic to a closed Euclidean n -

cell [8]. A topological  space that admits the 

structure of a regular CW-complex is  termed 

a regular CW-space. 

(b) Let K and L  be cellular complexes and 

LKf :  a continuous map. Then 

LKf :  is a cellular map if  (i) for each 

cell )(,  fK is a cell in L ,   (ii) 

dim ))(( f dim )( , [7]. 

(c) Let K and L  be regular CW-complexes of 

the same  dimension and K be equipped with 

http://topospaces.subwiki.org/wiki/CW-complex
http://topospaces.subwiki.org/w/index.php?title=Homemorphism&action=edit&redlink=1
http://topospaces.subwiki.org/wiki/Regular_CW-space
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finite cellular subdivision  such that each 

closed n -cell is homeomorphic to a closed 

Euclidean n -cell. A cellular map LKf :
 

is a cellular folding  iff : (i) for each i-cell 

)(, ii fK   is an i-cell in L  , i.e.,  f  

maps i-cells to i-cells,  (ii) if  contains n  

vertices, then )(f  must contains n  

distinct vertices. 

In the case of directed complexes it is also 

required that  f   maps directed i-cells of K to i-

cells of L  but of the same  direction, [5]. 

A cellular folding LKf : is neat if 

1 nn LL  consists of a  single n -cell, interior L

. The set of all cellular foldings of K  into L  is 

denoted by C(K, L) and the set of all neat foldings  

of K into L  by Ɲ (K, L). 

 

(d) If ),( LKCf  , then Kx is said 

to be a singularity of    f  iff  f  is not a local 

homeomorphism at  x. The set of all 

singularities of f corresponds to the "folds" of 

the map.   

This set associates a cell decomposition Cf  of 

M . If M  is a  surface, then the edges and vertices 

of Cf  form a graph f  embedded in M , [6]. 

(e) Let LKf :  be a continuous function. 

If, for each    k-chain C in K ,  f (C) is a k-

chain in L  and if the diagram 

  )()( LCKC k

f

k   


                        

  

)()( 11 LCKC k

f

k      

commutes, then LKf : is a chain function 

from K to L ,     [7]. 

(f) The set Sn of all permutations on n objects 

forms a group of order n!, called the symmetric 

group of degree n , the law of composition 

being that for maps of the objects onto  

themselves. A group of permutations is said to 

be transitive if, given any pair of letters a, b 

(which need not be distinct),  there exists at 

least one permutation in the group which  

transforms a into b, [11]. Otherwise the group 

is called in transitive. And is said to be 1-

transitive if for any pair of  letters a, b, there 

exists a unique element x of the group such  

that bxa  . 

2-The associated graph: 

Let LKf : be a cellular folding. By 

using the cell subdivision fC  of K  we can define 

the associated graph fG  constructed from the n -

cells of K  and the cellular folding  f as follows: 

The vertices of
 fG  are just the n -cells of K  

and if  and   are distinct n -cells of K  such 

that )()(   ff , then there exists an edge 

E  with end points  and   . We then say that 

E  is an edge in fG  with end points  ,  .    

The graph fG  can be realized as a graph
 fG

~
 

embedded in R
3
 as follows. For each n -cells  , 

   choose any points v ,  v . If 

 and   are end points of an edge E , then we 

can join v to v  by an arc e in R
3
 that runs from 

v through  and    to v crossing E 

transversely at a single point. The correspondence 

v , eE   is trivially a graph isomorphism 

from fG  to fG
~

. 

It should be noted that the graph fG  has no 

multiple edges, no loops and generally 

disconnected. 

In this paper by a a complex we mean a regular 

CW-complex. 

 

Examples(2-1): 

 

(a) Let K  be a complex with the cellular 

subdivisions given in  Fig.(1-a). Let 

KKf :  be a cellular folding defined by f 

(v2,  v5, v8, v11) = (v4, v7, v10, v13),  f (e1, e4, e6, 

e9, e11, e14, e16, e19,  e21) = (e3, e5, e8, e10, e13, e15, 
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e18, e20, e23) and 1)(  iif  , i = 1, 3, 5, 7, 9, 

where the omitted 0, 1, 2-cells through this 

paper   will be mapped to themselves. The 

graph fG  in this case has  ten vertices and five 

edges as shown in Fig.(1-b). 

 

Fig.(1) 

b) Consider the complex K shown in Fig.(2), 

which) consists of one 2-cell, seven 1-cells and 

seven 0-cells. Let KKf :  be a cellular 

folding defined as follow: f (v5, v6, v7) = (v2, v3, 

v2),  f (ei) = e2, 7,6,5i and  f ( ) =  . 

The graph    fG  in this case consists of a 

vertex only with no edges. 

 

Fig.(2) 

(c) Let K be a complex such that
 

K is a cylindrical 

surface with a cellular subdivision consists of 

eight 0-cells,sixteen 1-cells and eight 2-cells, 

see Fig.(3). Let
 

KKf :  be a cellular  

folding defined by: f (v5, v6, v7, v8) = (v1, v3, v3, 

v3), 

,,,,(),,,,,,,,,,( 9999141312118654321 eeeeeeeeeeeeeeef    

),,,,,, 161516109715 eeeeeee and 

).,,,,,(),,,,,( 767766854321  f
 

This can be done by the composition of the 

following two    cellular foldings: 1f (v5, v8) = (v1, 

v3), ),,,,,,( 14131186211 eeeeeeef

),,,,,,( 1615109743 eeeeeee and

).8,7,6,5()4,3,2,1(1  f  

),(),( 33762 vvvvf  , 

)16,15,9,9()12,5,4,3(2 eeeeeeeef 

 and
 

).,(),( 76852  f     

The graph fG  in this case has eight vertices and 

twelve edges    see Fig.(3-b). 

 

Fig.(3) 

 (d) Consider a complex K such that K  is a tours 

with four 0- cells, eight 1-cells and four 2-cells, see 

Fig.(4-a). Let KKf :  be a cellular folding 

given by: f (vi) =  vi, i = 1, 2, 3, 4,   f (e3, e4) = (e2, 

e1) and  f ( 42 , ) = ),( 31  . The graph fG   

in this case has four vertices and two edges, see 

Fig.(4-b). 

 

Fig.(4) 
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3-Properties of the associated graph: 

Some of the properties of the associated graph can 

be characterized by the following theorems: 

Theorem (3-1): 

Let K  and L  be complexes of the same dimension 

n , ),( LKCf  . The associated graph fG  is 

disconnected unless f  is a neat cellular folding. 

Proof: 

Let 1 and 2 be distinct n-cells of 
)(nK , and 

let 1 ~ 2 means )()( 21  ff  .  It is 

clear that the relation  ~  is an equivalence relation. 

Hence the quotient set 
)(nK ~ =

}],{[ )(nK is a partition on 
)(nK , 

where ][  is the equivalence class of any n-cell 

 . It follows that fG has more than one 

component otherwise all the n-cells of K  will be 

mapped to the same n-cell of L  which in fact is the 

case of cellular neat folding. In the last case there 

will be a unique equivalence class ][  and hence 

the graph fG  is connected. 

It follows from the above theorem that the 

components of the graph fG  is equal to the number 

of the equivalence classes generated by the relation 

~. 

Theorem (3-2): 

Let K  and L  be complexes of the same dimension 

n ,
 

),( LKCf   a cellular folding. Then each 

component of fG  is vertex transitive on itself. 

Proof:  

From Theorem(3.1) the equivalence relation 

defined on the n-cells 
)(nK of K  defines a partition

}],{[ )(nK  on 
)(nK , where each 

equivalence class represents a component of fG . 

Now, consider one of these components
i

fG , with 

say r  vertices, i.e., rGV i

f )( . Each vertex of 

i

fG
 

is adjacent to the other vertices in the 

component, then any permutation of the set 

)( i

fGV is an automorphism of 
i

fG . Thus the set 

 of all permutations (automorphisms) form a group 

which is the symmetric group Sr acting on the set 

)( i

fGV . The orbit of any )( i

fGV under 

Sr is the whole set )( i

fGV , i.e., )( i

fGV has a 

single orbit and hence the automorphism group Sr is 

transitive on )( i

fGV . 

Results(3-3): 

Let LKf :
 
be a neat cellular folding: 

1) The symmetric group Sr, 
)(nKr  acts 1-

transitively on the     graph Gf. 

2) Gf  is vertex transitive. 

3) From the above results we conclude that the 

graph Gf  of a neat cellular folding is a complete 

graph. 

Example (3-4): 

Consider the complex K  shown in Fig.(5-a), which 

consists of four 2-cells, eight 1-cells and five 0-

cells. Let KKf :  be a cellular folding defined 

as follows: f (v4, v5) = (v3, v2),  f (e4, e5, e6, e7, e8) = 

(e3, e1, e2, e2, e2) and  f ( i ) = 1 , 

.4,3,2,1i  The graph fG in this case is 

complete, see Fig(5-b). 

 

Fig.(5) 

(4) Chain maps and cellular folding: 

The following theorem gives the necessary and 

sufficient condition for a cellular map to be a 

cellular folding. 

Theorem(4-1): 

Let K  and L  be complexes of the same dimension  

n and LKf :  be a cellular map such that 

.)( KLKf   Then
 

f  
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is a cellular folding if and only if the map

),()(: LCKCf ppp  between chain complexes 

)),(( pp MC  , )),(( /

pp NC  is a chain 

map. 

                           

Proof: 

Let LKf :  be a cellular folding, then it is a 

cellular map and for each p-cell K  we can 

define a homomorphism 

)()(: LCKCf ppp  by:  

   { 
 ( )      ( )                 

          ( ( ))              
 

And since cellular foldings map p-cells to p-cells 

[5], )( pf is a p-cell in L  for all  . Thus for 

a p-chain ...2211  pp aaC 
 

),(KCa p

p

kk   where Zsa ’ and 

s’ are p-cells in M , 
 

...)()( 2211  p

p

p

p fafa 

 )...()( 2211

p

kk

pp

pp aaafCf 

).()( LCfa p

p

kpk    

Now, since the closures of both 
p

  and 

)( pf  have the same number of distinct 

vertices, then ,/

_1 pppp ofof   where 

)()(:
1_ KCKC ppp  and 

)()(:
1_

/ LCLC ppp  are the boundary 

operators, that is to say the following diagram 

commutes 

)()( LCKC p

f

p
p  

p                                        

/

p  

)()(
1

1_

1 __ LCKC p

f

p

p  

and hence fp is a chain map. Conversely, suppose 

f  is not a cellular folding then there exists a j-cell 

 in K  such that )(f is an m-cell in L, where

mj  . Since fp is a homomorphism from the 

p
th

-chain of K  to the p
th
-chain of L , then 

,
1

1

1

1

)()
)(

()
)(

( 









n

i

n

i

fn
j

ijfin
j

iijf   

but )(f is not a j-cell, then jf  cannot be a j-

chain map and hence our assumption is false, and 

we have the result. 

Examples (4-2): 

(a) Let K be a complex such that K is the infinite 

strip ,0:),{(  xyx }0 ly 
equipped with an infinite number of 2-cells such 

that the closure of each 2-cell consists of four 0-

cells and four 1-cells, P4. Let L be a complex with 

six 0-cells, seven 1-cells and two 2-cells, see 

Fig.(6). The cellular map LKf : defined by: 

/)( ivivf  where 6,...,2,1i ,
 

 

/)( ji vvf  , where 6,...,2,1j  and 

)( ji  is a multiple of 6, 

 (  )    
 
              (  )    

 
  

            (  ) 

   
 
             (  )    

 
  

           (  )    
 
    

           (  )    
 
              (  )

   
 
         

          (  )  {
  
 
               

  
 
               

   

is a cellular folding. 

 

Fig.(6) 

(b) Consider a complex K such that 
2SK  , 

with cellular subdivision consisting of two 0-cells, 

four 1-cells and four 2-cells. Let KKf : be 
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a cellular map defined by: ),( 42 eef
 

),( 31 ee
 

and 1)(  if , .4,...,1i   

This map is a cellular folding with image consisting 

of two 0-cells, two 1-cells and a single 2-cell, see 

Fig.(7). 

 

Fig.(7) 

(c) Consider a complex K such that K is a 

tours with cellular subdivision consisting of three 0-

cells, six 1-cells and three 2-cells. Any cellular map

KKf : which has two vertices in the image 

is not a cellular folding since 1f in this case is not 

a chain map, see Fig.(8). 

 

Fig.(8) 

(d) Consider a complex K such that 
2SK  , 

with cellular subdivision consisting of four 0-cells, 

six 1-cells and four 2-cells, see Fig.(9). 

Let KKf : be a cellular map defined by

ii vvf )( , ,4,...,1i

),(),( 4132 eeeef  and 2)(  if ,

.4,...,1i   

This map is not a cellular folding since
 1  and 

)( 1f  do not contain the same number of 

vertices.  

 

Fig.(9) 

Result (4-3): 

Let LKf : , be a cellular folding. Then the 

induced homomorphism )()(:* LHKHf ppp   

will maps the generators of )(KH p to either the 

generators of L  or to zeros. This follows directly 

from the fact that the chain map 

)()(: LCKCf ppp   defines a homomorphism 

that has this property [5]. 

(5)Homology groups and neat cellular foldings: 
The following theorem gives the necessary and 
sufficient condition for a cellular map to be a neat 
cellular folding. 
Theorem (5-1): 

Let K  and L  be complexes of the same dimension 
n.       

  If ),( LKCf  , then f  is neat if and 

only if the map 

 
)()(: LCKCf ppp   between chain complexes

)),(( pp MC  , )/),(( pNpC   is a chain map 

and *ker)( fKH p  , where  

 )()(:* LHKHf pp  , 1p  is the induced 

homomorphisms. 
Proof: 

Assuming that f  is a neat folding, then it is a 

cellular folding and hence the map 

)()(: LHKHf ppp   between the chain complexes 

)),((),),(( /

pppp LCKC   is a chain map. Now 

consider the induced homomorphism 

),()(:* LHKHf pp   there is a short exact 

sequence 
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** Im)(ker0 *
*

fKHf
f

p

i 

where 
*i is the induced homomorphism by the 

inclusion. Since f  surjective, we have 

),(Im * LHf p  but 0)( LH p  for neat cellular 

foldings, hence the above sequence will take the 
form 

0)(ker0
*

*  KHf p

i
 

The exactness of this sequence implies that

*ker)( fKH p  . 

 Conversely, suppose
  

f  is a chain map between 

chain complexes and *ker)( fKH p 
 
but f  

is not neat, then 
1 nn LL consists of more than 

one n-cell. Thus
 

,0)(,)(0  LHZLH p

j

for np ,...,2,1  

and  *ker)()( fLHKH pp *ker f  

for 0p , and hence the assumption is false and 

f  is neat. 
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 المخططات المنشأه والدوال السلسلية
انًُتظًّ. ْزِ انًخــاخ تٕػح تأثٛش  -CWٔانًشتثؾ تانـٗ انخهٕٖ ػهٗ انتشاكٛة  Gfا انثحث تى تؼشٚف انًخـؾ انًُشأ فٗ ْز    

 vertex)انـٗ انخهٕٖ ػهٗ انًشكة. تجاَة رنك قذيُا خٕاص ْزا انًخـؾ ٔأثثتُا إَّ يخـؾ يتشاتؾ ٔنّ تأثٛش يتؼذ ػهٗ انشؤٔط
transitive)  ٔأخٛشا تإعتخذاو انذٔال انغهغهٛح ٔانضيش انٕٓيٕنٕجٛح حظهُا ػهٗ انششؽ انكافٗ إرا كاٌ انـٗ انخهٕٖ طاف .ٗ

 ٔانؼشٔسٖ نجؼم انذانح انخهّٕٚ ؿٗ خهٕٖ ٔؿٗ خهٕٖ طافٗ ػهٗ انتٕانٗ.
 تى تقذٚى تؼشٚف انًخـؾ انًُشأ يغ إػـاء تؼغ يٍ الأيثهح انتٗ تٕػح ْزا انتؼشٚف. أولا: 

 نهـٗ انخهٕٖ ٔنهـٗ انظافٗ ػهٗ انتٕانٗ ٔأثثتُا انتانٗ:تى تٕػٛح خٕاص ْزا انًخـؾ  ثانيا:
 ( انًخـؾ انًُشأ ٚكٌٕ غٛش يتشاتؾ إلا إرا كاٌ انـٗ انخهٕٖ ْٕ ؿٗ طافٗ.1)
 ( لأٖ ؿٗ خهٕٖ ٚكٌٕ كم يشكة يٍ يشكثاخ انًخـؾ انًُشأ ْٕ تأثٛش يتؼذ ػهٗ سؤٔط انًشكثح.2)

هٕٖ ٔحظهُا ػهٗ انششٔؽ انًتحققّ تٕاعـح انًخــاخ انًُشأج نهحظٕل دسعُا حانح أٌ تكٌٕ انذانح انخهّٕٚ ْٗ ؿٗ خ ثالثا:
 ػهٗ انـٗ انًتتاتغ.

 دسعُا َفظ انًشكهح ٔنكٍ تانُغثّ نهـٗ انظافٗ ٔنقذ حظهُا ػهٗ انششٔؽ انًتحققّ تذلانح انضيش انٕٓيٕنٕجٛح. رابعا:
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Abstract: In this paper, the exact truncated distribution of the stock price (truncated distribution  

for the range of a Wiener process) is available among the established results in the field of 

mathematics (Probability Distributions). Various statistical properties of the distribution are derived 

including reliability properties, moments, stress-strength parameter, order statistics, Bonferroni curve, 

Lorenz curve and Gini’s index. A real data set is analyzed to clarify the effectiveness of this 

distribution.                                                                                            

Truncated distribution; Wiener process; Reliability properties; Order Statistics. Keywords: 

1. Introduction 

Truncation in probability distributions may 

occur in many studies such as life testing  

and reliability. Truncation arises because, in 

many situations, failure of a unit is observed 

only if it fails before and/or after a certain 

period. May sometimes happen to be range of 

the definition of a certain probabilistic 

distribution is not fully compatible with some 

of the data, either for theoretical reasons or 

because the portion of the data cannot be 

obtained within this range, in this case we 

resort to the truncated distribution. The 

truncation method of the distribution is an 

important methodology in different fields of 

sciences, in particular communication networks 

and finance. etc. Truncation occurs in various 

situations, for example, right truncation occurs 

in the study of life testing and reliability of 

items such as an electronic component, light 

bulbs, etc. Left truncation arises because, in 

many situations, failure of a unit is observed 

only if it fails after a certain period. Often, 

study units may not be followed at the 

beginning of an experiment until all of them 

fail, and the experimenter may have to start at a 

certain time and stop at a certain time when 

some of the units may still be working. Many 

researchers were interested in studying the 

truncation method of the distribution, for 

example: Zaninetti [12] presents a right and left 

truncated gamma distribution with application 

to the stars that introduces an upper and a lower 

boundary. In addition, the parameters which 

characterize the truncated gamma distribution 

are evaluated. A Class of truncated Binomial 

lifetime distributions is obtained by Alkarni 

[13]. The type of middle and random truncation 

have been studied by Mohie El-Din et al. [14] 

and Teamah et al. [15]. Ali and Nadarajah [3] 

introduced a truncated version of the Pareto 

distribution. They derived the explicit 

expressions for the moments for the truncated 

version. Nadarajah [4] introduced truncated 

versions for five of the most commonly known 

long tailed distributions which possess finite 

moments of all orders and could therefore be 
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better models. Zaninetti and Ferraro [5] 

presented a comparison between the Pareto and 

truncated Pareto distributions. Recently, many 

papers has been presented the most important 

applications of the truncated distribution in 

various fields of science, for example, Pender 

[7] used the truncated normal distribution to 

approximate the non stationary single server 

queue with abandonment. Chattopadhyay et al. 

[8] provided a more accurate data fitting by 

using truncated geometric distribution to model 

the node degree distribution of a network 

compared to power-law, log-normal, Pareto, 

drift power-law and power-law with 

exponential cutoff distributions. 

The Wiener process has many applications 

throughout the mathematical sciences. In 

physics it is used to study Brownian motion, 

the diffusion of minute particles suspended in 

fluid, and other types of diffusion via the 

Fokker–Planck and Langevin equations. It also 

forms the basis for the rigorous path integral 

formulation of quantum mechanics (by the 

Feynman–Kac formula, a solution to the 

Schrödinger equation can be represented in 

terms of the Wiener process) and the study of 

eternal inflation in physical cosmology. It is 

also a prominent in the mathematical theory of 

finance, in particular the Black–Scholes option 

pricing model. The change of price formula 

based on the assumption that stock price follow 

a wiener process. The distribution of stock 

price through known time interval is the 

distribution of a Wiener process range. In the 

time interval ),0( T  the range of the Wiener 

process }0);({ ttW  is 

)(inf)(sup)(
),0(),0(

tWtWTR
TT

 and it gives the 

difference between the highest price for the 

stock and it's the lowest price. Feller [1] 

derived the probability density function of this 

range by using the method of images. Recently, 

an expansion for its cumulative distribution 

function and its quantiles are given by Withers 

and Nadarajah [2]. In addition, they gave a 

table of this cumulative distribution function. 

Here we have the following question: what 

should be done if we need to find the new 

distribution of the stock price in the time 

interval ),0( T  and its value is sandwiched 

between two certain values ba, ?  To answer 

the above questions, we should do a truncation 

on the distribution of a Wiener process range 

that has been obtained by Feller [1].  

In this paper, we will provide the Truncated 

Distribution of a Wiener Range (TDWR) and 

study various its statistical properties. The 

properties studied include reliability properties, 

moments, stress-strength parameter, order 

statistics, Bonferroni curve, Lorenz curve and 

Gini’s index. The difference between the 

TDWR and distribution of a Wiener process 

range which has been obtained by Feller [1] are 

showed as in the given figures through the 

paper. 

The paper is organized as follows. In Section 2, 

we introduce the TDWR. We study some 

statistical properties for TDWR in Section 3. 

An application to a real data set is presented in 

Section 4. Section 5 ends the paper with some 

concluding remarks and future works. 

2. Truncated distribution of a  Wiener range 

(TDWR)  

The stock price is assumed to move randomly 

according to one dimensional Wiener process 

ttW ),({ R
+
}, where R

+ 
is the set of real 

numbers and )(tW  is a Wiener process on 

),0(   with range )(TR on the time interval 

),0( T . This range is the difference between 

)(sup
),0(

tW
T

 and )(inf
),0(

tW
T

. Feller [1] gave the 

probability density function for the range of 

)(tW which controls the target’s motion as:  
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where  r0 and 0T and it is represented 

as in the figure 1. 
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Withers and Nadarajah [2] give its cumulative 

distribution function by: 
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and it is represented as in figure 2. 

 

 

 

Hence, it is easy to show that the survival 

function )(1(.)
)()(

rFF
TRTR

 is decreasing by 

increasing the value of ,T see figure 3. 

 

 

 

The importance of the distribution of the range 

that defined by (1) lies in its ability to model 

lifetime data with increasing failure rate. 

We are interested in TDWR defined by the 

following definition. 

Definition 1. Let )(TR  be a random variable 

with probability density function (1), define 

)(TR  as a corresponding double truncated 

(truncation from left and right) of )(TR with 

the probability density function )()( rg TR : Then, 

the probability density function of double 

truncated of )(TR is given by: 
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Figure 1: The probability density  function 

                 of . 

 

Figure 2: Cumulative distribution function 

                  of the range distribution. 

 

 

Figure 3: Survival function of the range  

                 distribution. 
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                                                                   (3) 

where bra  and 0T (see Appendix A) . 

Figure 4 represents the TDWR density function 

for different values of  a and b  with increasing 

the value of T .   

Remark 1. Using the ratio test, we can prove 
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Thus, by the Weierstrass M-Test we see that, 
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Consequently, we can get (1) from (3)  

when 0a  and b 

The cumulative distribution function of TDWR 

is given by: 
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  (4) 

 

and it is represented in figure 5. 

 

 

 

 

 

Consequently, the survival function of TDWR 

is )(1(.) )()( rGG TRTR   and it is decreasing by 

increasing the value of ,T see figure 6. 
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3. Some statistical properties 

In this section, we study various statistical 

properties of the range distribution (truncated 

and non truncated) including shapes of the 

probability distribution function and the hazard 

rate function, reliability properties, raw 

moments, moments of (reversed) residual life, 

stress-strength parameter, Bonferroni curve, 

Lorenz curve and Gini’s index. 

3.1 Reliability properties 

A key concept of "Whenever you want to 

check more than one investment profits in the 

stock market, investment whenever exposed to 

greater risk." You are when you buy or sell 

shares or bonds or any other financial 

instruments, you are fair investment risk and 

the degree of risk this differ from other 

financial instrument. For example, the financial 

instruments that you expect them highly 

profitable (such as active stock) contain a large 

degree of risk. This means that the share price 

could rise so much (that is to make a profit for 

you), but it may happen that the price drops 

much (and these are the risks that may cause 

the low volume of your money and your 

investments). Therefore, the risk rate (hazard 

rate) is influenced by the swings between fall 

and rise much of the stock price during the time 

period ),0( T . We get the hazard rate function 

of the range distribution for Feller [1] and 

Withers and Nadarajah [2] as follows: 
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and it is represented as in figure 7. Also, the 

reversed hazard rate function is:

,

2

)12(
exp

8

)12(

8
1

2
.

8

)12(
exp

2
)2(

2

)}({)(~

2

22

1
222

1

2

2

1

22

1

2

1

2

1

1
2

1

1

)()()(








 





































































































r

Tk

r

T

k

TrkTr
r

rFfrz

k

k

tRTRTR










                                                                     

(6) 

See figure 8.  
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Figure 6:Survival function of the TDWR. 

 

Figure 7: Hazard rate function of the range. 

 

Figure 8: Reversed hazard rate function of the range. 
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It is clear that, the hazard rate approaches zero 

as the range r  increases, and increases rapidly 

as r  falls to zero. For the new distribution of 

TDWR, the hazard rate function is:
 

,)}({)( 1

)()()(

 rGgr tRTRTR

 

and it is represented in figure 9. 

 

 

In addition, the reversed hazard rate function of 

TDWR is: 

,)}({)(
~ 1
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 rGgr tRTRTR  

see figure 10. Also, in this case the hazard rate 

increases rapidly as r  falls to lower bound a .  

 

3.2 Moments 

Many interesting characteristics and features of 

the range distribution and TDWR can be 

studied through its generating function and 

moments. For the range distribution (1) 

Withers and Nadarajah [2] found its generating, 

characteristic functions and moments. Here, if 

R  has TDWR distribution and bra  and

0T then the moment generating function 

(m.g.f.) of R  defined by: 
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Figure 9: Hazard rate function of TDWR. 

 

Figure 10: Reversed hazard rate function 

 of TDWR. 



A.A. Teamah                       The truncated distribution of the range for a Wiener process: Application to the stock price 

29 

 










 











































1

3

2 0
2

1

1

)(
!

1

),,,(
2

k

b

a

m

k

m

m m
k

k

k

b

a

r
tr

k

drr
m

m

t

r
tr

dreTtbaI

k
















 

(9) 

and 

 










 











































1

32

2 0
2

1
22

.)(
!

1ˆ

ˆ
),,,(

2

k

b

a

m

k

m

m m
k

k

b

a

r
tr

drr
m

m

t

r
tra

dre
r

a
TtbaI

k














                                                        (10) 

By solving the following equations: 
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where  is the exponential integral function. 
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In addition, the characteristic function can get 

from the equation: 
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3.3 Stress-strength parameter 

 In this section, we find

))()(( 12 TRTRPY  , when )( 1TR  and 

)( 2TR  are two independent random variables 

distributed as in (1) with ,1T 2T , respectively. In 

the statistical literatureY is known as the stress-

strength parameter which describes the 

changing of stock price. In addition, Y has a 

random strength )( 1TR that is subject to a 
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random stress )( 2TR .  The changing in stock 

price at the instant that the stress applied to it 

exceeds the strength, and the changing will 

function satisfactorily whenever )()( 12 TRTR 

; see, for example, Church and Harris [6]. Thus, 

for the range distribution, Y  can be expressed 

as: 
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Similarly, we can find 
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3.4 Order statistics 

For the European minimum (or maximum) 

options, Goldman et al. [16] defined and 

derived the closed form pricing formula. The 

exact distribution of the maximum and the 

minimum of the prices-path had been available 

among the established results in the field of 

mathematics (Probability Theory). There are 

several studies in the literature including 

Bergman [17], Kemna and Vorst [18], 

Kunitomo and Takahashi [19] and Tumbull and  

Wakeman [20], they determined the probability 

distribution of the geometric average of the 

prices when the underlying asset price follows 

the log-normal distribution, and the closed 

form for the option prices were obtained. 

However, the closed form pricing formula for 

the arithmetic average options do not seem to 

be derived yet except for a special case in 

Bergman [17]. The approximated pricing 

formula and the algorithms for them are quite 

well studied. The difficulty seems to be in 

deriving the exact distribution function of the 

average price. This make the order statistics are 

among the most fundamental tools in non-

parametric statistics and inference. In this part, 

we discuss some properties of order statistics 

for TDWR. 

Let nnnn RRR ::2:1 ...   denote the order 

statistics of a random sample nRRR ,...,, 21  from 

the TDWR. Then the p.d.f. of  the p
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Also, the distribution function of npR :  is, 
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In addition, the q
th

 moment of the p
th

 order 

statistic npR :  is, 
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where Ei gives the exponential integral 

function. Also, at 2j  we obtain, 
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3.5 Bonferroni curve, Lorenz curve and 

        Gini’s index 

Recently, studies of the stock price has gained 

a lot of importance. Some important measures 

in this studies are the Lorenz curve and Gini’s 

index. Lorenzcurve and the associated Gini 

index are undoubtedly the most popular indices 

of income in equality. Giorgi and Mondani [9] 

and Giorgi [10] shown that Bonferroni curve is 
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such a measure, which has the advantage of 

being represented graphically in the unit square 

and can also be related to the Lorenz Curve and 

Gini ratio. Giorgi and Crescenzi [11] presented 

that these measures have some applications in 

reliability and life testing as well. 

Since R be a non negative random variable 

with cumulative distribution function (4) which 

is smooth (i.e., continuous and has derivatives 

of all orders). However, the first moment of R
about zero is finite, exists and non zero as in 

(20).  The Lorenz curve is useful in business 

modeling: e.g., in consumer finance, to 

measure the actual percentage of delinquencies 

attributable to the percentage of people with 

worst risk scores. Lorenz curve can be obtained 

by using the equation, 
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4. Application 

The oscillation between the fall and rise of the 

stock price within a time period T  can be 

expressed by a Wiener process. The difference 

between the highest and the lowest value of the 

stock price it called the range R  of the Wiener 

process. When the selling price becomes equal 

to the cost price then 0R   and when the 

share  

price up to the upper limit barrier (the upper 

limit that the stock price has already been 

reached and reversed to decline) then R .  

In the upper limit barrier case, the analysts 

believe that the stock price became expensive 

and there is no rush to buy it. In this case, 

sudden drop in the market index may occur 

while the stock did not reach the point of sale. 

To avoid a sudden drop in the share price sale 

we should study the behavior of R  by studying 

some its statistical properties as in Withers and 

Nadarajah [2]. To ensure that no loss, we 

should put an upper limit barrier (to avoid 

sudden drop) and lower limit barrier greater 

than 0 (a guarantee of a gain even if few). 

Thus,   we    use   (3)   and   (4)   to   get these 

statistical properties of the bounded range. In 

[2], Withers and Nadarajah supposed that 

2/2
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 rTx  where the values of x  are given. 

Here, we let the truncated values of 

5,...,2,1, x  for the corresponding time 

periods are 5,...,2,1, T , then we get the 

values  of the  lower  limit barrier a   and  the 

upper limit barrier b . Also, we obtain the 

values of  ,R  the probability density function 

and cumulative distribution function of R are 

given in Table 1.   

 

The most important information for the 
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choose the right time to sell the stock when 
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Also, the mean values of R  for the 

corresponding time periods 5,...,2,1, T  are 

given in Table 1. 

By using mathematica 7 , we found that
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. Thus, in (3), (4) and 

)(1 tM  we get the values of the probability 

density function, cumulative distribution 

function and the mean values of R  

as in Table 1. 
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0 0.293429 17.3205 

 

 

 

 

 

75 

0.18806 0.298058 17.59 

0.264483 0.307531 18.2 

0.357377 0.311711 18.5 

0.53159 0.318651 19.0526 

 

 

 

0 0.207485 24.495 

 

 

 

 

 

150 

0.148396 0.213385 25.2 

0.38762 0.221321 26.3 

0.531461 0.225316 26.944 

0.589331 0.226782 27.2 

 

 

 

0 0.179672 28.284 

 

 

 

 

 

200 

0.30787 0.189531 29.95 

0.340165 0.19041 30.12 

0.531639 0.195119 31.113 

0.730238 0.199212 32.12 

 

 

 

0 0.160714 31.6228 

 

 

 

 

 

250 

0.0985405 0.16382 32.23 

0.531547 0.174528 34.785 

0.664283 0.177046 35.54 

0.781801 0.179039 36.2 

Table 1: The probability density function, cumulative distribution function and the mean values  

               of .  

      

 

 

 

0 0.359021 14.14 

 

 

 

 

 

50 

0.3941 0.383331 15.2 

0.531761 0.3899 15.5 

0.531762 0.389935 15.556 

0.906967 0.404273 16.5 
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5. Concluding remarks  
 

In this paper we introduced a truncated 

distribution for the range of a Wiener process. 

This distribution is the best for the stock price 

in a limited range. We provided a mathematical 

treatment to find some statistical properties 

including reliability properties, moments, 

stress-strength parameter, order statistics, 

Bonferroni curve, Lorenz curve and Gini’s 

index. A real data set is analyzed to clarify the 

effectiveness of this distribution. We hope that 

this distribution may attract a wide applications 

in lifetime modeling.  

In future research one can introduce a new type 

of middle and random truncation for the range 

of a Wiener process. 
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Appendix A 
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TDRW, we put 2/2

1


 rTx , ,
2

2

1



aT

a

,
2

2

1



bT

b  and   ,8/12 22
  kk  then (1) 

(the probability density function of the range) 

become: 




 




























1 21

23

23

)2(

))exp(2(

))exp(4(

)(
k

k

kk

k

T

x

xx

xx

x







 . 

And, its cumulative distribution function is 

given by: 

)exp()2()( 22

1

1 





  xax k

k

kT   

Consequently, 

)exp()2()( 22

1

1 





  aaa k

k

kT  and   

)exp()2()( 22

1

1 





  bbb k

k

kT  .If  

bxa  then the double truncated density 

function can get from the equation:

 

)()(

)(
)(

ab

x
x

TT

T
T







    

             































































 











)exp()2(

)exp()2(

)2(

))exp(2(

))exp(4(

22

1

1

22

1

1

1 21

23

23

aa

bb

x

xx

xx

k

k

k

k

k

k

k

k

kk

k











 

Now by substituent again with 

,
2

2

1



rT

x
 

,
2

2

1



aT

a
 

,
2

2

1



bT

b and 

  8/12 22
  kk   then the density function 

of TDWR is given by: 

)()(

)(
)(

)()(

)(

)(
aFbF

rf
r

TRTR

TR

TR


  

.

2
)12(

8

2
)12(

8

8
)12(

8

2

1

8

)12(

2

22

1

8

)12(

2

22

1

2

)12(

2

22

2

1

222

222

222





















































































































k

Tak

k

Tbk

k

Trk

eTa
k

eTb
k

eTr
k

T













Using integration by parts one can shows that 

 

b

a

TR drr 1)()( . 

References 
[1] W. Feller, The asymptotic distribution of 

the range of sums of independent random 

variables, Ann. Math. Stat., 22 (1951) 427–

432. 

[2] C. Withers and S. Nadarajah, The 

distribution and quantiles of the range of a 



A.A. Teamah                       The truncated distribution of the range for a Wiener process: Application to the stock price 

39 

Wiener process, Appl. Math. and Compu., 

232 (2014) 766–770. 

[3] M. Ali and S. Nadarajah, A truncated Pareto 

distribution, Compu. Commun.,30 (2006)1-

4. 

[4] S. Nadarajah, Some truncated distributions, 

Acta Appl. Math., 106(2009) 105-123. 

[5] L. Zaninetti and M. Ferraro, On the 

truncated Pareto distribution with 

applications, Cent. Eur. J. Phys., 6(1)(2008) 

1-6. 

[6] J.D. Church and B. Harris, The estimation 

of reliability from stress strength 

relationships, Technometrics 12 (1970) 49–

54. 

[7] J. Pender, The truncated normal 

distribution: Applications to queues with 

impatient customers, Operations Research 

Letters 43 (2015) 40–45. 

[8] S. Chattopadhyay, C.A. Murthy and S. K. 

Pal, Fitting truncated geometric 

distributions in large scale real world 

networks, Theoretical Computer Science 

551 (2014) 22–38. 

[9] G.M. Giorgi and R. Mondani, Sampling 

distribution of Bonferroni inequality index 

from exponential population, Sankhya B 57 

(1995), 10–18. 

[10] G.M. Giorgi, Concentration Index, 

Bonferroni. Encyclopedia of Statistical 

Sciences, Wiley, New York, 2(1998), 141–146. 

[11] G.M. Giorgi and M. Crescenzi, A look at 

the Bonferroni inequality measure in a 

reliability framework, StatisticaLXL 4 

(2001), 571–583. 

[12] L. Zaninetti, A right and left truncated 

gamma distribution with application to the 

 stars. Advanced Studies in Theoretical 

Physics, 23 (2014), 1139-1147. 

[13] S.H. Alkarrni, A class of truncated binomial 

lifetime distributions, Open Journal of 

Statistics 3(2013), 305 -313. 

 [14] M.M. Mohie El-Din, A.A. Teamah, A. El-

Bar and A. Salem, Random sum of mid 

truncated Lindley distribution, Journal of 

Advanced Research in Statistics and 

Probability, 2(1) (2010),  

27-36.  

 [15] A.A. Teamah, A. El-Bar and A. Salem, 

Random sum of truncated and random 

truncated Lindley distribution, the Int. 

Journal of Applied Mathematics, 23 (2010), 

961-971. 

 [16] M. Goldman, H.B. Sosin and M.A. Gatto, 

Path Dependent Options; 'Buy at the low, 

Sell at the High,  Journal of Finance, 34 

(1979) 1111-1127. 

 [17] Z. Bergman, Pricing Path Contingent 

Claims," Research in Finance, 5 (1985) 229-

241. 

 [18] A. Kemna and A.Vorst, A Pricing Method 

for Options Based on Average Asset Values, 

Journal of Banking and Finance, 14 (1990) 

113-129. 

 [19] N. Kunitomo and A. Takahashi, Pricing 

Method for Average Options, Finance 

Kenkyu, 14 (1992) 1-19. (in Japanese) 

 [20] M. Turnbull and L. Wakeman, A Quick 

Algorithm for Pricing European Average 

Options, Journal of Financial and 

Quantitative Analysis, 26 (1991) 377-389. 

 

 Wienerذدِ ػٍ ؿشٚق اٚجااد انتٕصٚاغ الاحتًاانٗ انًثتإس نًاذٖ ػًهٛاح       فٗ ْزِ انٕسقّ تى اٚجاد تٕصٚغ عؼش انغٓى نًُتج فٗ فتشِ يح

يؼاياام الاجٓاااد ٔانقاإج    انؼااضٔو انًٕثٕقٛااح  خظاااهض رنااك فااٙ تًااا نهتٕصٚااغ انًختهفااح الإحظاااهٛح انخظاااهضانؼشاإاهّٛ.  تااى اٚجاااد  

حتإٖ ػهاٗ يجًٕػاّ يفتشػاّ ياٍ      اػـااء يثاال ٚ   تى. Gini ٔيؼايم Lorenz يُحُٗ   Bonferroni ٔيُحُٗ  انشتٛثح  الإحظاءاخ

 .انتٕصٚغ ْزا فؼانٛح نتٕػٛحانثٛاَاخ 
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Abstract  : We give the number of edges in two intersection graphs. 
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Introduction 

Intersection graph theory is one of the most 

important topics in graph theory. There is an 

outstanding concise book titled : "Topics in 

Intersection Graph Theory" by Terry A. McKee 

and F. R. McMorris [1], in which the most 

developed topics of intersection graph theory, 

emphasizing chordal, interval competition 

graphs, threshold graphs, p-intersection graphs, 

intersection multigraphs, pseudographs, and 

tolerance intersection graphs are discussed. 

Here we obtaied the number of edges in two 

intersection graphs, namely : power set 

intersection graphs and functional intersection 

graphs. Stirling numbers arise in a varity of 

analytic and combinatorics problems. We need 

stirling numbers of the second type in 

calculating the number of edges of functional 

intersection graphs. For these numbers the 

reader is advised to see [2]  

 

 

1. Power set intersection graph 

1.1  Definition. Let X := *          +. Let 

P(X) be the power set of X, i.e. P(X) = *      

 +.The power set intersection graph is        G = 

(V,E), where V "corresponds to" P (X), and 

two vertices in V are adjacent if and only if the 

two corresponding subsets in P(X) have a non-

empty intersection.  

1.2 Theorem. For a set X := *          +,the 

power set        intersection graph G = (V,E), 

has      number of vertices =   , and    , 

number of edges = 
 

 
(     –   +1) 

Proof.      =    is trivial. Now let     ,     

(number of elements of A) = m. The degree of 

the vertex   , which "corresponds to" the set  

A =        –    It follows that : 
 

    = 
 

 
∑ .

 
 
/ 

   (       –  ) = 

 
 

 
   ∑ .

 
 
/

 

   

 
 

 
   ∑ .

 
 
/

 

   

(
 

 
) –

 

 
∑ .

 
 
/
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     = 
 

 
   (    ) – 

 

 
   ((  

 

 
)  1) – 

 

 
(   1) 

     =       –        
 

 
   +

 

 
 

     = 
 

 
(     –   +1)                                             

     1.3 Example. The number of vertices of the 

power set intersection graph corresponding to 

the set X := *     +, is   = 8.   

The number of edges = 
 

 
(     –   +1) =15            

 

 

 

 

 

 

 

 

 

Figure 1 shows such a graph, where the vertex 

"123" corresponds to the subset *     +, the 

vertex "0" corresponds to the empty set    

There is an edge joining the vertices "123" and 

"12", since the subsets *     + and *   +  

intersect      

2. Functional intersection graph Fig.1                   

2.1  Definition. Let L := *         +, be the 

set of all functions from X into Y. The 

functional intersection graph G has vertices    

and     "corresponding to" the functions f and g 

of L. The vertices    and    are adjacent if and 

only if range (f) and range (g) have a non-

empty intersection. 

2.2  Definition. Stirling number of the second 

kind   
 [1] is equal to the number of ways of 

partitioning a set of m elements into r non-

empty subsets, 

           
  = 

 

  
∑ (  )    
   .

 
 
/    

2.3  Remark. The number of all surjective 

functions from X onto Y, where     = m,     = 

n, n    is equal to       
 . Consequently, for 

the set of all functions       having the 

same range, consisting of r elements, the 

corresponding is a complete graph consisting of  

      
  vertices. We note that the number of all 

functions defined from X into Y 

 = ∑ .
 
 
/ 

        
  =   , 

as it is well-known. 

2.4  Theorem. The number of edges of the 

functional intersection graph G corresponding 

to the set L := *         +, whereX := 

*          +, Y := *          +, is equal to  

      
 

 
   (    ) - 

 

 
∑ .

 
 
/ 

        
  (   )             

n     

  
 

 
   (    ) -

 

 
∑ .

 
 
/ 

        
  (   )             

m < n 

Proof. To explain the situation, we plot every 

complete subgraph of the same number of 

vertices in the "same plane", as follows : 

   :     ,    , …,    ⇒ .
 
 
/ subgraphs 

   :      ,     , …  ,        ⇒ .
 
 
/ subgraphs 

   :       ,      , …   ,            ⇒ .
 
 
/ 

subgraphs 

. 

. 

   :        , …          ⇒ .
 
 
/ subgraphs 

. 
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. 

. 

     :          , … ⇒ .
 

   
/   .

 
 
/ 

subgraphs 

     :         , …   ⇒.
 

   
/   .

 
 
/ 

subgraphs 

   :                        ⇒ .
 
 
/    subgraph 

(      is the complete subgraph corresponding 

to all funcations        X := 

*          +, Y := *          +, their range 

is *       +. This complete subgraph consists 

of      
   vertices, as said before ) 

Case 1 :  n     

   , the degree of any vertex in a subgraph in 

plane    is given by: 

  = 0+(.
 
 
/  .

   
 

/ )      
  +(.

 
 
/  

.
   
 

/ )      
  +… 

+(.
 

   
/  .

   
   

/ ) (   )      
  +.

 
 
/    

  
   

= ∑ .
 
 
/ 

        
   ∑ (

   
 

)   
        

   

    =   - n – ((   )   (   )) 

    =   - (   ) -1 

  , the degree of any vertex in a subgraph in 

plane    is given by: 

  = 2-1+(.
 
 
/  .

   
 

/ )      
  +(.

 
 
/  

.
   
 

/ )      
  +… 

     +(.
 

   
/  .

   
   

/ ) (   )  

    
  +.

 
   

/ (   )      
   

     +.
 
 
/      

   

 =     ∑ .
 
 
/ 

        
   ∑ (

   
 

)   
      

  
   

    =       - n – ((   )   (   )) 

    =   - (   ) -1 

  , the degree of any vertex in a subgraph in 

plane    is given by: 

  =r-1+(.
 
 
/  .

   
 

/ )      
  +(.

 
 
/  

.
   
 

/ )      
  +… 

     +(.
 

   
/  .

   
   

/ ) (   )      
   

  +.
 

     
/ (     )        

  +…+.
 
 
/   

  
   

  =     ∑ .
 
 
/ 

      

  
   ∑ .

   
 /   

        
   

    =       - n – ((   )   (   )) 

    =   - (   ) -1,              n    

 

Now the number of all vertices in plane    is 

given by : 

                    = .
 
 
/      

     

hence    , the number of edges of the graph G 

is given by : 

   = 
 

 
 ∑      

 
    

    = 
 

 
 ∑ .

 
 
/       

  ((    )  (   
   

 )  ) 

    = 
 

 
 (    )∑ .

 
 
/       

    
   

 
 

 
 ∑ (   ) .

 
 
/       

    
     

    = 
 

 
   (    )  

 

 
 ∑ .

 
 
/       

  (   
   

 )        n         □ 

Case 2 :  m < n . 
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Here some modifications have to be done. The 

number of all functions defined from X into Y 

is given as in case 1 by 

         ∑ .
 
 
/       

   
   =    

The complete subgraphs in planes 

               are indicated as follows : 

     :          , …   ⇒ .
 

   
/ subgraphs 

     :         , …   ⇒.
 

   
/   subgraphs 

   :        , …          ⇒ .
 
 
/ subgraphs 

Now   , the degree of any vertex in a subgraph 

in plane    is given by: 

  = 0+(.
 
 
/  .

   
 

/ )      
  +(.

 
 
/  

.
   
 

/ )      
  +… 

     +(.
 

   
/  .

   
   

/)(   )      
   

     +(.
 
 
/  .

   
 

/)      
   

  = ∑ .
 
 
/ 

        
  –   - (∑ (

   
 

) 
      

  
  - (n -1)) 

    =   - n – ((   )   (   )) 

    =   - (   ) -1 

To find   , the degree of any vertex in a 

subgraph in plane    we have two subcases : 

Subcase ( i ) : n – r < m, here 

  = r-1+(.
 
 
/  .

   
 

/ )      
  +(.

 
 
/  

.
   
 

/ )      
  +… 

     +(.
 

   
/  .

   
   

/ ) (   )      
   

     +.
 

     
/ (     )        

  +…  

+.
 
 
/     

   

    =     ∑ .
 
 
/ 

        
      ­ 

(∑ .
   
 /   

        
  - (n - r)) 

    =       - n – ((   )   (   )) 

    =   - (   ) -1     ( the same as in case 1 ) 

Subcase ( ii ) : n – r ≥ m 

  = r-1+(.
 
 
/  .

   
 

/ )      
  +(.

 
 
/  

.
   
 

/ )      
  +… 

+(.
 
 
/  .

   
 

/ )      
   

    =     ∑ .
 
 
/ 

        
      ­ 

(∑ .
   
 / 

        
  - (n - r)) 

    =   - (   ) -1       ( the same as in case 1 

) 

 

Now, as before,    is the number of vertices in 

plane    which is given by : 

                    = .
 
 
/      

     

hence the total number of edges of the graph is 

given by : 

    = 
 

 
 ∑      

 
    

     = 
 

 
 ∑ .

 
 
/       

  ((    )   
   

(   ) ) ) 

    = 
 

 
 (    )∑ .

 
 
/       

    
   

 
 

 
 ∑ (   ) .

 
 
/       

    
     

     = 
 

 
   (    )  

 

 
 ∑ .

 
 
/       

  (   
   

 )        m < n      □ 

2.5 Example :  X := *              +, Y := 

*        + 

The number of vertices of the corresponding 

functional intersection graph =  =     
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The number of edges = 
 

 
 ×     ×     - 

 

 
 ∑ (   ) .

 
 
/       

    
    

 =       - 
 

 
 (          

          
   

 ), 

where    
  = 1, 

                
  =  ∑ (  )   .

 
 
/     

   = ­ 2 +    = 

30, 

hence     = 29403 - 
 

 
 ( 96 + 90 ) 

              = 29310 

2.6 Example :  X := *        +, Y := 

{                } 

Number of vertices =  = 125 

    = number of edges = 
 

 
 × 125 × 124 - 

 

 
 ∑ .

 
 
/ (   )       

    
    

where    
  =   

  =1 

              
  = 

 

   
 ∑ (  )   .

 
 
/     

   = 3 

hence     = 
 

 
 × 125 × 124 - 

 

 
 ( 5 ×64+10 

×27×6+10×8×6 ) 

 

             = 7750 – 1210 

             = 6540 
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 اىَيخص اىعشبٚ

ففٚ اىشنو الأٗه ٕ٘ سسٌ حقبطع ىق٘ة  فٚ ٕزا اىبحث بحسبة عذد الأحشف فٚ شنيِٞ مو ٍَْٖب عببسة عِ سسٌ حقبطع . قَْب

فئت عذد عْبصشٕب  ُ  عْصش ٗ اىحشف اى٘اصو بِٞ سأسِٞ ٝعْٚ أُ اىفئخِٞ اىجضئٞخِٞ اىَْبظشحِٞ ىٖزِٝ اىشأسِٞ بَْٖٞب 

ٗ اىشنو اىثبّٚ ٕ٘ سسٌ حقبطع سؤٗسٔ ٕٚ اىَْبظشة ىيذٗاه  حشف .حقبطع . ٗ أٗجذّب اىصٞغت اىخٚ حعطٚ عذد ٕزٓ الأ

اىَعشفت بِٞ فئخِٞ إحذإَب ٕٚ اىَجبه ٗ عذد عْبصشٕب  ً  عْصش ٗ اىفئت الأخشٛ ٕٚ اىَجبه اىَقببو ٗ عذد عْبصشٕب ُ 

َٖب حقبطع ٗ قَْب بحسبة عْصش ٗ اىحشف اى٘اصو بِٞ سأسِٞ ٝعْٚ أُ اىذاىخِٞ اىَْبظشحِٞ ىٖزِٝ اىشأسِٞ ٍذٙ مو ٍَْٖب بْٞ

 عذد الأحشف ببىصٞغت مَب ٕ٘ ٍ٘ج٘د ببىبحث .
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A proposed method for solving multiobjective linear fractional programming 

problems with rough coefficients 

El-saeed Ammar and Mohamed Muamer  

  Department of Mathematics, Faculty of Science. Tanta University. Tanta, Egypt 

Abstract: In this paper, a new method for solving multiobjective linear fractional programming 

problems with rough coefficient (MORLFP) is proposed. The MORLFP problem is considered by 

incorporating rough intervals in the coefficients of the objective functions. It is provided that a 

MORLFP problem is converted to an optimization problem with rough interval valued objective 

functions which it their bounds are four multiobjective linear fractional functions. The rough efficient 

solutions are characterized by using a new proposed algorithm. A numerical example is given for the 

sake of illustration 

 

Key words:  Multi objective linear fractional programming problems, Rough interval, Rough interval 

function. 

1. Introduction 

Fractional programming concerns with the 

optimization problems of one or several ratio 

functions subject to some constraints. Decision 

makers sometimes, may face up with the 

decision to optimize actual cost/standard cost, 

output/employee, etc with respect to some 

constraints. In management problems, both the 

ratio functions profit, cost and quality to be 

optimization are conflicting in nature. Such 

types of problems are inherently multiobjective 

fractional programming problems.  

Pawlak [11] defined rough set theory as a new 

mathematical approach to imperfect knowledge. 

Kryskiewice [8] uses rough set theory to 

incomplete has found many interesting 

applications. the rough set approach seems to be 

of fundamental importance to cognitive 

sciences, especially in the areas of machine 

learning, decision analysis, and expert systems 

Pal [13]. Rough set theory, introduced by 

Pawlak [12], expresses vagueness, not by means 

of membership, but employing a boundary 

region of a set. The theory of rough set deals 

with the approximation of an arbitrary subset of 

a universe by two definable or observable 

subsets called lower and upper approximations. 

Tsumoto [19] used the concept of lower and 

upper approximation in rough sets theory, 

knowledge hidden in information systems may 

be unraveled and expressed in the form of 

decision rules. The concept of rough interval 

will be introduced by Lu and Huang [9] to 

represent dual uncertain information of many 

parameters.The associated solution method will 

 Copyright @ by Tanta University,  Egypt  
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be presented to solve rough interval fuzzy linear 

programming problems. 

Chakraborty and Gupta [3] a different 

methodology had been proposed for solving 

multiobjective linear fractional programming 

(MOLFP) problems always yielding an efficient 

solution and reduces the complexity in solving 

the (MOLFP) problems.. Tantawy [18] proposes 

a new method for solving linear fractional 

programming problems. Effati and Pakdaman 

[5] introduce an interval valued linear fractional 

programming (IVLFP) problem. They convert 

an IVLFP to an optimization problem with 

interval valued objective function which its 

bounds are linear fraction function. Sulaiman 

and Abulrahim [14] use transformation 

technique for solving multiobjective linear 

fractional programming problems to single 

objective linear fractional programming 

problem through a new method using mean and 

median and then solve the problem by modified 

simplex method. Guzel [6] proposes a new 

solution to the multiobjective linear fractional 

programming (MOLFP) problem. Thus MOLFP 

problem is reduced to linear programming 

problem. Sulaiman and  Abulrahim [17] uses a 

new transformation technique for solving 

multiobjective linear fractional programming 

problems to single objective linear fractional 

programming problem through a new method 

using arithmetic average and new arithmetic 

average technique and then solve the problem 

by modified simplex method. 

This paper deals with a new method for solving 

MORLFP problem. The MORLFP problem is 

considered by incorporating rough intervals into 

coefficient of the objective functions of the 

problem. The MORLFP problems are converted 

to four optimization problems. An algorithm is 

proposed for characterizing the solutions 

concept of the MORLFP problems. A numerical 

example is given for the sake of illustration.  

2. Preliminaries 

  2.1 Linear fractional programming 

problem: 

The general linear fractional programming 

(LFP) problems are defined as follows: 

                                  
 ( )

 ( )
     

Subject to: 

      *                    +     

                         ,       , 

       

Where  ( )           ( )          

are real valued and continuous functions on  

                                           

Theorem 1. [6]     
 (  )

 (  )
      

 ( )

 ( )
      if 

and only if          

       (     )     * ( )     ( )    

  +       

2.2 Multi objective linear fractional 

programming problem 

The general multi objective linear fractional 

programming (MOLFP) problems written as:  

      ( )  *  ( )   ( )      ( )+   

Subject to:  

     *                       +              

           ( )  
      

      
 

  ( )

  ( )
 , 

                            ( )      
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Definition 1.           is an efficient solution 

for MOLFP problems if there is no         

such that   
  ( )

  ( )
 

  ( 
 )

  ( 
 )
        k   and                                                                    

     ( )

  ( )
 

  ( 
 )

  ( 
 )
    for at least one   . 

Theorem 2.   If  ̃ is an optimal solution of 

         {∑   (  ( )  
 
   

(  )
 (  (  )))      }                         

 where is (  )
  

  ( 
 )

  ( 
 )
      

  ( )

  ( )
  for all  

             

      {            ∑      
   } 

 then  ̃ is an efficient solution of MOLFP 

problems. 

The proof of this theorem is much similar to the 

proof given by Guzel in [6]. 

2.3   Rough interval linear fractional 

programming  

  Definition 2. Suppose    is the set of all 

compact intervals in the set of all real numbers  

   . If       then we write   ,       -with 

      and the    following holds:  [5]  

i.       iff        for all       . 

ii.       iff         for all       . 

Definition 3.  Let     be denote a compact set of 

real numbers. A rough interval    is defined as: 

     ,  (   )  (   )- where  

 (   )     (   ) are compact intervals denoted 

by lower and upper approximation intervals 

 of        with   (   )   (   )  

Definition 4.   For the rough interval    the 

following holds:  

i.     0 ,  iff      (   )   0    and     

 (   )   0   

ii.     0  ,   iff     (   )   0    and    

 (   )   0 .  

In this paper we denote by       is the set of 

all rough intervals in   . Suppose          

    we can write    [ (   )     (   ) ] and 

also                                  ,  (   )     

   (   ) -  where 

 (   )  ,        -      (   )  ,           -                                       

                         . 

 

 Similarly we can defined   (   )   (    )  

Definition 5.  [9]  For two rough intervals  

         when                                

we can define the following operations on 

rough intervals as follows:  

1)         , [ (     (   )]  

[ (   )   (   )] - 

     Such that:        

 [ (   )   (   )]  ,               

     - and 

   [ 
(   )   (   )]    ,                    - . 

2)         , [ (     (   )]  

[ (   )   (   )]  

      Such that: 

 [ (   )   (   )]  ,                  

     - and                                                                                                                                                                      

[ (   )   (   )]  ,                  

     - . 
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3)        , [ (   )   (   )]  

[ (   )   (   )] - 

 

    Such that: 

  [ (   )   (   )]  ,               

     - and                                                                                                                                                         

    [ (   )   (   )]  ,                  

     - . 

4)        , [ (   )   (   )]  

[ (   )   (   )] - 

       Such that: 

  [ (   )   (   )]  ,                  

     -  and                                                                                                                                                                  

    [ (   )   (   )]  ,                  

     - .  

Definition 6.[5] Let     be the set of all closed 

and bounded intervals in   .                           

A function          is called an interval 

valued function with     ( )  ,  ( )    ( )  

] where for every           ( )      ( )  are 

real valued function ,with    ( )     ( ) . 

Definition 7.  A function              is 

called a rough interval function with 

   ( )  [ (   )( )    (   )( )] where for 

every           (   )( )     (   )( )  are lower 

and upper approximation interval valued 

functions, with                                 (   )( )   

  (   )( )   

Proposition: [10] Let    be a rough interval 

function defined on      and      . Then 

  is continuous at    if and only if  (   )( ) 

and  (   )( ) are continuous at      

3. Problem Formulation  

The multiobjective linear fractional 

programming problems with rough coefficient 

(MORLFP) are defined as follows 

    {  
 ( )  

  
 ( )

  
 ( )

 
  
     

 

  
     

      

        }                   

        Subject to: 

        *                   +.    (1)  

     where    
 ,    

 ,    
   and     

       ,   is 

an      constraint matrix,          

    

 We can rewrite problem  (1) as follows: 

      {  
 ( )  

,  
       

         
       

     -

,  
       

         
       

    - 
     

      }               

      Subject to: 

      *                   +.     (2)    

The objective function in (2) is a quotient of 

two rough interval functions. Using the 

definition of operations on a rough intervals  

we have    

     
 ( )  , 

  
       

    

  
       

      
  
       

    

  
       

         

         ( )                                      Now 

equations (3) can be written into the form: 

      
 ( )  ,       

   ( )      
   ( ) - Where 

     
   ( )       

   ( ) lower and upper 

multiobjective approximation interval valued 

linear are fractional functions       defined as:    
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   ( )    

,  
      

        
      

   -

,  
      

          
      

   - 
   

 and      
   ( )    

,  
      

        
      

   -

,  
      

          
      

   - 
,   

 for all                  

Using the theorem (2-1) in [5] we can write 

equation (3) as the following: 

    
 ( )  0 ,    

  ( )       
  ( )-  ,    

  ( ) 

  
  ( )-1      (4)           where 

     
  ( )          

  ( )      
  ( ) and 

    
  ( )    for all                                 

  are multiobjective linear fractional functions 

defined as: 

     
  ( )   

  
      

   

  
      

        ,        
  ( )  

 
  
      

   

  
      

      

     
  ( )   

  
      

   

  
      

      and      
  ( )  

 
  
      

   

  
      

     

                         For all                  

Now the problem (1) can be converted into 

multiobjective rough interval linear fractional 

programming (MORLFP) problems as follows: 

    *  
 ( )  , ,    

  ( )    
  ( )-  

,    
  ( )   

  ( )--  +,                          

     Subject to: 

        *                   +.   (5) 

                         For all                 

By using the arithmetic operations and partial 

ordering relations, we decompose the MORLFP 

problem (5) can be the following four sub 

problems defines as:  

         

           
  ( )  

    
  ( )

    
  ( )

 
  
      

   

  
      

  ,   

            

       Subject to: 

        *                   +         

          

           
  ( )  

    
  ( )

    
  ( )

 
  
      

   

  
      

  ,   

         

           Subject to:  

       *                   + 

               

    
  ( )                     

  ( ) 

           : 

            
  ( )  

    
  ( )

    
  ( )

 
  
      

   

  
      

     

          

          Subject to:  

     *                   +                 

                
  ( )      

  ( )

                  
  ( ) 

                   

          
  ( )  

    
  ( )

    
  ( )

 
  
      

   

  
      

   

,             

                          Subject to: 

       *                   +                 

                    
  ( )      

  ( )

                       
  ( ) 

Now using Theorem (2) for socialization 

problems   ,    ,    and     which are MOLFP 

problems to the equivalent form which are 

linear programming (LP) problems (    
    

    
   

and    
  ) as follows: 
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{∑     (  
  ( )  (  

  )   
  ( ) 

    )   

         }  

            Subject to:  

     *                   +         

    
        

 

     {∑    (  
  ( )   

   

(  
  )   

  ( ) )            } 

  Subject to: 

       *                    +                                                  

    
  ( )                       

  ( ) 

         
  :       

     

     {∑    (  
  ( )  (  

  )   
  ( )

 

   

 )   

         } 

         Subject to:  

       *                  +              

                    
  ( )      

  ( )   

                                                 
  ( ) 

   
             

     {∑    (  
  ( )  (  

  )   
  ( ) 

    )    

         }      Subject to:   

      *                                  

                    
  ( )      

  ( )  

                      
  ( )                                                  

 Where      {   ∑   
 
         

             }    

    Theorem 3.[4]  If        is an optimal 

solution for LP problems     
              then  

        is an efficient solution of the 

corresponding        MOLFP problems          

         . 

Definition 8.        is a rough efficient 

solution of MORLFP problem (1) if there is no 

     such that 
  
 ( )

  
 ( )

 
  
 (  )

  
 (  )

 ,           

and 
  
 ( )

  
 ( )

 
  
 (  )

  
 (  )

  for at least one   

Theorem 4. If        is an efficient solution 

of the problems                   then       

is a rough efficient solution of problem (1).   

                                         

4.  Algorithm solution for MORLFP 

problem :     

We construct the algorithm for solving a 

MORLFP problem as follows:  

Step1.  Convert the problem to the form of 

MORLFP problem (5).  

Step2. Transfer the problem (5) to four 

problems on forms   ,    ,    and      which 

are  MOLFP problems.   

Step3.  Find the maximum value of each 

objective function of    ,     ,     and    as: 

   (  )
  

  ( 
 )

  ( 
 )
     ⏟

   

   
  ( )

  ( )
 

Step4.   Use the weighting method to 

convert each problems   ,    ,     and       to 

single objective in the form   
 ,   

 ,   
  and   

   

respectively.    
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Step5.  Find the optimal solution of each 

linear programming LP problem   
 ,   

 ,   
  

and   
    

Step6.  Using the results of step5, obtain a 

rough efficient solution to the given 

MORLFP problem by the Theorem 3 and 

Theorem 4.  with objective value:   

  
  (  )   [ [  

  (  )   
  (  )-  

,  
  (  )    

  (  )-  ]  

                  

 

The algorithm is illustrated with the 

following example. 

5. Numerical example:  

 Consider the following MORLFP problem: 

      ( )  

[,           -  ,     -]    [,           -   ,       -]   

[,       -   ,          -]    [,        -  ,        -]     [,        -   ,        -]
     

   ( )  

[,        -  ,     -]    [          -   ,       -]   

[,       -   ,        -]    [,     -  ,       -]     [,        -   ,        -]
  

       Subject to:    

       ,                 

                     ,            

 

  Now the decomposition problem of the given 

MORLFP problem as in the following form: 

   2    
  ( )  

       

           
    

  ( )  

       

         
  3  

   2    
  ( )  

      

          
    

  ( )  

      

           
  3  

      2    
  ( )  

           

         
    

  ( )  

       

           
  3  

    2    
  ( )  

           

          
       

  ( )  

       

           
3  

Subject to :        

       ,                 

                     ,            

Now construct the four problems and solving as 

follows : 

  :    

       2    
  ( )  

       

           
       

  ( )  

       

         
3  

            Subject to:         

                                ,                  

                            ,            

                                        

It is observed that              
              and   

             
           . 

This MOLFP problem is equivalent to the 

following LP problem can be written as: 

 

  
 : 

        {  (            (         

 ))                                          (         

 (        ))}  

               Subject to :        

             ,                 

                     ,            
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For           

The optimal solution of the LP problem    
 is 

obtained as:    
        

      

The efficient  solution  of MOLFP problem    

are:  

  
           

      with objective value 

.     
            

     . 

  :   

         2    
  ( )  

      

          
       

  ( )  

      

          
3 

Subject to: 

   
      

          
              

      

          
   , 

       ,                 

                     ,            

 

It is observed that              
             and   

             
        .       

This MOLFP problem is equivalent to the 

following LP problem can be written as: 

 

    
 : 

      {  (           (        

 ))        (            (         

 ))}  

            Subject to:  

      

          
             

      

          
   

       ,                 

                     ,            

For           

The optimal solution of the LP problem    
   is 

obtained as:   
        

     

The efficient solution of MOLFP problem    

are: 

   
        

      with the objective value 

     
             

          . 

   :   

    2   
  ( )  

           

         
    

  ( )  

       

          
3     

Subject to :  

     
           
         

         

       
       

          
   , 

              ,               

                               0 

It is observed that              
             and   

             
              . 

This MOLFP problem is equivalent to the 

following LP problem can be written as: 

     
  :  

         {  (                 (       

 ))                                  (         

    (          ))}, 

Subject to : 

     
           

         
          

       
       

          
       , 

              ,                

                                     0  . 

For            

The optimal solution of the LP problem    
  is 

obtained as:    
        

     

The efficient solution of MOLFP problem    are                                                     

  
        

        with objective value 
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      2    
  ( )  

           

          
       

  ( )  

       

          
3 

Subject to : 

     
           

          
            

       
       

          
      , 

                             

.                                  

It is observed that              
              and   

             
              . 

This MOLFP problem is equivalent to the 

following LP problem can be written as:  

      
         

        {  (                  (    

     ))            (         

    (          ))} 

Subject to :    

     
           

          
            

       
       

          
       , 

              ,               

                               0 

For            

The optimal solution of the LP problem    
   is 

obtained as:   
        

     

The efficient solution of MOLFP problem   are:                                                         

  
        

       with objective value 

    
               

          

The rough efficient solution of original 

MORLFP problem is   
        

      with 

the rough objective value   

   
  [,              -     ,             -]     

    
   [,             -     ,          -] . 

6. Conclusion 

A new approach is proposed for solving 

multiobjective linear fractional programming 

problems with rough coefficients (MORLFP) 

problem. For treating the problems use the 

method of Effati and Pakdaman to convert the 

MORLFP problem into four multi objective 

linear fractional programming MOLFP 

problems. By the method of  Dinkelbach, the 

MOLFP problems is convert to linear 

programming LP problems .  An algorithm is 

established for characterizing the solutions 

concept of MORLFP problems .   
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 الملخص العربي :

فٙ ْزِ انٕسقح تُأنُا ؿشٚقح جذٚذِ نحم انًشاكم الايثهّٛ انخـّٛ انكغشّٚ يتؼذدج الاْذاف حٛث تكٌٕ يؼايلاخ 

تتهخض انـشٚقح فٙ تحٕٚم انًشكهح الايثهٛح انًؼـاِ انٙ استؼح يشاكم ايثهّٛ خـّٛ    Rough intervals دٔال  انٓذف 

اعتؼشػُا تؼغ انتؼشٚفاخ  .غؾ حٛث تكٌٕ يؼايلاخ دٔال انٓذف اػذاد حقٛقّٛ كغشٚح يتؼذدِ الاْذاف فٙ طٕسِ ات

 .ٔانُظشٚاخ ٔاقتشحُا خٕاسصيٛح لاٚجاد انحم الايثم نهًشكهّ ٔاػـُٛا يثال ػذد٘ يٍ اجم انتٕػٛح
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Abstract: This paper is to generalize the concept of convex body to the so called relative convex body 

in Euclidean space   . Some geometrical and topological properties for this kind of sets are discussed. 

Some properties of the central projection map(Beltrami map) introduced to discuss these concepts in 

the hyperbolic space   ..                                                                                     

Key words: Relative convexity, relative open (closed) sets, relative convex body and relative convex 

surface. 

Introduction:  
  The concept of convex bodies have an 

important role in differential geometry and 

represent a very interesting fruitful area of 

research. 

In the last years a lot of mathematicians 

generalized convexity notion in Euclidean 

space    . Such as K-convexity[4], D-

starshaped sets[3], Invexity[2], and Relative 

convexity[5]. 

A new kind of generalized convex body for sets 

in Euclidean and hyperbolic spaces is 

presented, this kind is called relative convex 

body. Also some geometrical and topological 

properties for this kind are discussed. Before 

this discussion let us survey some definitions 

and results that help us in this work. 

Definition(1).  

A subset B of the Euclidean space   is an open 

set if it consists entirely of interior points 

  ( ), hence if     ( ). A subset        is 

a closed set if it contains its boundary   ( ), 
hence if       ( ).[7] 

Theorem(2). 

 (1)The Euclidean space    and the empty set 

are open (closed) sets. 

(2)The union of any number (finite number)of 

open (closed) sets is an open (closed) set. 

(3)The intersection of a finite number (any 

number) of open (closed) sets is an open 

(closed) set.  

Theorem(3). 

The following statments are equivalent 

(1)  is a closed set, that is       ( ). 

(2)The limit points to     ( )  belong to  , 

that is       ( )  

(3)If the neighbourhood  (   )    
        then    . 

(4)The complement of   is an open set. 

(5)  is its own closure,  ( )  that is   
  ( )  

Where (   )       (   )    [7] 

Theorem(4). 

For any set    the following statments are hold: 

(1)The interior   ( ) and the exterior   ( ) 
are open sets, hence   ,  ( )-    ( )  
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(2)The closure   ( ) is a closed set, hence 

  ,  ( )-    ( )  

(3)The boundary   ( ) is a closed, hence 

  ,  ( )-    ( )  

(4)The derived set   ( ) is a closed set, hence 

  ,  ( )-    ( ) [7] 

Definition(5). 

A subset        is a convex set if for each pair 

of points       it is true that the closed line 

segment ,  - joining   and   lies wholly in 

 .[1,8] 

Definition(6). 

Let   be a subset of the Euclidean space    

and   be a subset of  . The set   is a relatively 

convex set with respect to   if for each pair of 

points       the closed segment ,  - joining 

  and   lies wholly in  .[5] 

In the following some results are introduced as 

given in [5]. 

 (1)If    and    are relatively convex with 

respect to  , then       relatively convex 

with respect to  . On the other hand for 

      the above result is no longer valid. 

 (2)Every subset        is relatively convex 

with respect to any of its supersets. 

(3)Every subset   is relatively convex with 

respect to its convex hull. Moreover, each 

subset is relatively convex with respect to any 

convex superset. 

 (4)If    is a relatively convex set with respect 

to  , then every subset of   is relatively 

convex with respect to    

 (5)Let        be a subset. If every subset 

      is relatively convex with respect to  , 

then   is convex. 

4-Relative closed and relative open sets 

  In the following section, we shall introduce 

some definitions and results on relative closed 

and relative open sets. 

Definition(7). 

Let   be a subset of the Euclidean space    

and   be a subset of  . The set   is said to be a 

relatively closed with respect to   if every limit 

point of   belongs to    

We denote to the set of all limit points of the 

set   by   . Which is called the derived set.[7] 

Proposition(8). 

  The empty set is relative closed set with 

respect to any set  . 

Proof 

Let the empty set   be not relative closed with 

respect to  . Then, there exists a limit point of 

 , say  , such that   dose not belong to  . 

Since the empty set has no limit points, Then 

this is a contradiction. Therefore, the empty set 

is relative closed with respect to any set     

Corollary(9). 

The Euclidean space is relative closed with 

respect to itself. 

Proposition(10). 

If     and    are relative closed with respect to 

B, then       and       are also relative 

closed with respect to    

Proof 

Firstly, since    and    are relative closed with 

respect to  , then          and   
    

    , 

Thus (     )  . Let   be a limit point of 

      then,   (     )
    (  

    
 ), this 

implies that     
      

 , then     . 

Hence       is relative closed with respect to 

   Secondly, simillarly we have (     )    

and   
    

    , if   is a limit point of 

(     ), then   (     )
  (  

    
 ). 

Therefore     
  or     

 . Therefore     
  

or     
 . Therefore,    . Hence,       is 

relative closed with respect to  .  

Proposition(11). 

The set  is relative closed set with respect to 
itself  if and only if   is closed. 

Proof 

(1)If   is closed, then   contains all limit 
points of  . Hence   is relative closed with 
respect to    

(2)If   is relative closed with respect to itself, 
then   contains all limit points of  . Thus,   is 
closed. 
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Proposition(12). 

  If   is relative closed with respect to  , then 
the closure of   is relative closed with respect 
to the closure of  . 

Proof 

Since   is relative closed with respect to  , 
then we have       and      . This implies 
that       ( )    ( ). Since   ( ) is closed, 

then (  ( ))
 
    ( )     ( ), hence   ( ) is 

relatively closed with respect   ( )  

Remark(13). 

 (1) Every closed set   is relative closed 
with respect  to any of its supersets.  
(2)Every subset is relative closed with 
respect to any closed superset. 

Corollary(14). 

  Every set   is relative closed with respect to 
  ( ).        

Proposition(15). 

   If   is a relatively closed with respect to  , 
then every subset of   is relatively closed with 
respect to  . 

Proof 

Let   be any limit point of          , then for 
all open set   containing  , we have (   )  
    implies (   )       This means 
that   is a limit point for  . Since   is relative 
closed with respect to  . Hence,   belongs to 
 . Therefore,   is relative closed with respect 
to    

Corollary(16). 

   If   is relative closed set with respect to  , 
then the interior of   is relative closed with 
respect to  . 

Lemma(17). 

  If   is relative closed set with respect to   and 
 , then   is relative closed with respect to both 
    and    . 

Proof 

Since   is relative closed with respect to   and 

 , then we have 

             ( )  And 

            ( )  

From (1) and (2), we have     (   ) and 

    (   ). Hence,   is relative closed with 

respect to    . Simillarly, it is easy to see 

that   is relative closed with respect to      

Theorem(18). 

If   and   are two relative closed sets with 

respect to  , then     and     are also 

relative closed sets with respect to    

Proof 

Since   and   are relative closed with respect 

to  . Then  

            (1). And 

           (2). 

From (1) and (2), we have (   )     

and(     )    . Therefore (   )    . 

Hence (   )is relative closed set with 

respect to     

Simillarly, it is easy to see that (   ) is 

relative closed with respect to  . 

Proposition(19). 

If   is relative closed set with respect to both   

and   such that      . Then, there exists a 

proper subset       such that   is relative 

closed set with respect to  . 

Proof 

(1)If      , we put   . Hence,   is relative 

closed with respect to    

 (2)If       and       (given), then we have 
(   )    . Let   (   ),   is a proper 

subset of    Since   is relative closed with 

respect to both   and  . From the above 

lemma, we see that   is relative closed with 

respect to    

Proposition(20). 

Let   be a subset of the Euclidean space   . If 

every subset of   is relative closed with respect 

to  , then   is closed. 

 Proof 

If       is a relative closed with respect to  , 

then   contains all the limit points of the subset 

 . This is also true when we take    ,i.e.   

contains all the limit points of  . Therefore,   

is closed.   
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Definition(21). 

  Let        and      . The set   is called 

relative open set with respect to   if for all 

   , there exists an open set   containing   

such that        , i.e;   is entirely in  . 

Remark(22). 

(1)The empty set is relative open with respect 

to any set. 

(2)The Euclidean space    is relative open 

with respect to   . 

(3)The interior of a set   is relative open with 

respect to    

(4)Let        be a subset. If every subset       

is relative open with respect to  . Then   is 

open. 

Proposition(23). 

   The set   is relative open with respect to   if 

and only if   is open. 

Proof 

(1)If   is open, then for all    , there exists 

an open set   containing  , such that   
     . Thus   is relative open with respect to 

   

 (2)If   is relative open with respect to itself, 

then for all    , there exists an open set   

containing  , such that        . This means 

that   is open. 

Theorem(24). 

   If the two sets    and    are relative open 

with respect to  , then       and       

are relative open with respect to  . 

Proof 

(1)Since    and    are relative open with 

respect to  , then we have        and       , 

thus (     )    . If   (     ), then 

          . Again since    and    are 

relative open with respect to  , then there exist 

the open sets    and    such that          

and         . Thus   (     )    . 

Therefore       is relative open with respect 

to  . 

 (2)Since        and       , then (   
  )    . Let   (     ), then      or 

    . Since    and    are relative open with 

respect to  , then we discuss the following 

cases: 

 (a)If     , then there exists an open set    

containing   such that          , then 

      is relative open with respect to    

 (b)If     , then there exists an open set    

containing   such that         , then 

      is relative open with respect to    

 (3)If (     )   . In this case, we see that   

is relative open with respect to    

Proposition(25). 

If   and   are two relative open sets with 

respect to  , then (   ) and (   ) are 

relative open with respect to    

Proof 

For all   (   ), we have          . 

Since   and   are relative open with respect to 

 , then there exist the open sets    and    such 

that          and         . Hence, 

  (     )    . Therefore,     is relative 

open with respect to    Simillary, it is easy to 

see that     is relative open with respect to 

   

5-Relative convex body 

In this section, we define relative convex body 

and study some geometrical properties for this 

concept. 

Definition(26). 

   Let   subset of   , and      . If the subset   

is bounded and relative closed with respect to 

 , then   is called relative compact with 

respect to  . 

Remark(27). 

(1)If   is relative compact set with respect to 

 , then every subset of   is relative compact 

set with respect to  . 

 (2)If   is relative compact set with respect to 

  and  , then   is relative compact set with 

respect to both     and      
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Definition(28). 

   Let          is called relative convex body 

with respect to   if the following conditions are 

satisfied: 

(1)  is relative compact with respect to    

(2)  is relative convex with respect to  . 

(3)  has non-empty interior. 

Definition(29). 

   The relative convex surface is the boundary 

of the relative convex body. 

It is easy to see that 

 (1)if the two sets    and    are relative 

convex bodies with respect to  .  Then, we 

have  

i)(     )    is relative convex body with 

respect to    ) 

ii)      is not relative convex body in 

general.) 

 (2)Every non-empty subset        is relatively 

convex body with respect to   .  

 (3)Every convex body is relatively convex 

body with respect to any of its supersets. 

 (4)If   is a relatively convex body with  

respect to  , then every non-empty bounded 

subset of   is relatively convex body with 

respect to    

Proposition(30). 

   If   is a relative convex body with respect to 

both   and  , such that   is not a subset of  . 

Then there exists a proper subset       such 

that   is relative convex body with respect to 

 . 

Proof 

(1)Assume that       and put    . Hence   

is relative convex body with respect to    

 (2)Assume that       and(      ,given), let 

  (   ), clearly   is a proper subset of 

 . Since   is relative convex body with respect 

to both   and  . Therefore, we have   is 

relative convex body with respect to  . 

6-Relative convex in hyperbolic space 

Now we devote our study to the concept of 

relative convex in hyperbolic space   . The 

most convenient model of the n-dimensional 

hyperbolic space for the present work is the 

spherical one    which might be defined as 

follows [8],[5]:for  

0,1))()((:).......,,,( 1
1

2

21121 2

xxxVxxxH
n

i

innn 




     

 and also in the metric, where      denotes the 

Minkowski space (        ) with the 

pseudo-Riemannian metric     
         ∑       . The metric when 

restricted to    yields a Riemannian metric 

with constant sectional curvature     [5]. 

As    is a complete simply connected 

Riemannian manifold with negative sectional 

curvature, then each pair of points        

are joined with a unique geodesic segment [8]. 

Therefore,    is starshaped. The Beltremi(or 

central projection)map         is defined 

to be the map which takes      to the 

intersection of the Euclidean  space      

with the straight line through   and the origin   

of       The map   takes the whole of    

diffeomorphically to the open ball  (   ) of 

radius 1 and center at   (         ). 

Furthermore, the map   is a geodesic map and 

so K-totally geodesic submanifolds of    are 

mapped under   onto k-planes in   . We can 

also show that closed, open, compact, bounded 

and starshaped subsets of    are mapped under 

  to subsets of  (   ) of the same type. It 

worth mentioning that the inverse of map   has 

the same properties of  .[6] 

Lemma(31). 

The central projection map preserves limit 
points of sets. 

Proof 

Obvious. 

Proposition(32). 

The central projection map preserves relative 
closed property of set. 
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Proof 

Let   be a subset of    and   is a relative 
closed set with respect to  . Then, for any limit 
point of  , say  , belongs to  . If we apply the 

central projection map  , then we have  ( ) is 

a limit point of  ( ) and  ( )    ( ). Since 

   , then  ( )   ( ). Therefore,  ( ) is a 

limit point of  ( )    ( ) and  ( )   ( ). 

Hence,  ( ) is relative closed set with respect 

to  ( )  

Proposition(33). 

The central projection map preserves on 
relative open sets. 

Proof 

Let   be a subset in    such that is relative 
open set with respect to  . Then, for any  
    and there exists an open set   containing 

  such that        . If we apply   then 

 ( )        ( ). Therefore the centeral 
projection map preserves on relative open sets, 

where  ( )     is open set. 

Proposition(34). 

The central projection preserves on relative 
convexity. 

Proof 

Let   be a closed connected set in    and   be 
a subset of  . Assume that     in   and the 

closed geodesic segment ,say    , which is 
determined by   and   is in  . Then if we 

apply   and assume that the closed segment 

, ( ) ( )- is not in  ( ), this means that 
there exists  at least one point belongs to 

, ( ) ( )- but not belongs to  ( ), which is a 

contradiction with the fact that   preserves on 

the interior, exterior and boundary points of  . 

Hence  ( )  ( ) are in  ( ) and , ( ) ( )- 

is in  ( ). This implies that  ( ) is relative 

convex with respect to  ( )  

Corollary(35). 

the central projection map preserves on the 
concept of relative convex body. 
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للأجسام في الفراغ النوني والزائديتحدب النسبي   

    ا.د. هدي كوال السيد, د. هحود سويلن, دعاء هحود السيد

جبٍعت طْطب                  -ميٞت اىعيً٘ -قسٌ اىشٝبضٞبث  
                

انغُٕاخ الأخٛشج كثٛش يٍ ػهًاء  اٌ تحذب الأجغاو ًٚثم دٔس ْاو فٙ انُٓذعح انتفاػهٛح ًٔٚثم يغاحح ٔاعؼح نهثحث حٛث اٌ فٙ
انشٚاػٛاخ قايٕا تتؼًٛى فشع انتحذب فٙ انفشاؽ انَُٕٙ, فٙ ْزا انثحث قًُا تتؼًٛى تحذب الأجغاو تًا ٚغًٙ تحذب الأجغاو انُغثٙ 

انخٕاص  ٔقًُا تذساعح تؼغ انخٕاص انتٕتٕنٕجٛح ٔانُٓذعٛح نٓزا انُٕع يٍ انتحذب, اٚؼا فٙ ْزا انثحث ػشفُا إَاع جذٚذج يٍ
انُٓذعٛح ٔانتٕتٕنٕجٛح نهتحذب انُغثٙ نلاجغاو فٙ انفشاؽ انضاهذ٘ ٔحظهُا ػهٙ تشاتؾ تٍٛ انفشاغاخ انَُٕٙ ٔانضاهذ٘ يٍ خلال 

 اعتخذاو ساعى تٛهتشايٙ.
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